早教吧作业答案频道 -->数学-->
如图,正方形ABCD的边长为4,点P为线段AD上的一动点,(不与点A、D重合),以BP为直径在BP的右侧作半圆O,与边BC交于点K,边点O作OF∥AD,且与CD相交于点F,与半圆O相交于点E,连接KE,设AP=x
题目详情

▼优质解答
答案和解析
(1)∵OE∥BK,
∴当OE=BK时,四边形OBKE为平行四边形,
而OB=OE,
∴此时四边形OBKE为菱形,
连接OK,如图,
∵OB=BK=OK,
∴△OBK为等边三角形,
∴∠OBK=60°,
∴∠ABP=30°,
在Rt△ABP中,∵AP=x,AB=4,
∴x=
AB=
;
(2)在Rt△ABP中,∵PB2=AP2+AB2=x2+42=x2+16,
∴S=
•π•(
)2=
π•
(x2+16)=
x2+2π;
(3)∵OF∥PD∥BC,
而OP=OB,
∴OF为梯形PBCD的中位线,
∴OF=
(PD+BC)=
(4-x+4)=4-
x,
∵OF⊥CD,
∴当OF=
BP时,CD与半圆相切,
∴BP=2OF=2(4-
x)=8-x,
在Rt△ABP中,∵PB2=AP2+AB2,
∴(8-x)2=x2+42,解得x=3,
即x为3时,CD与半圆相切;
此时S=
x2+2π=
×9+2π=
π.
3 3 33 3 3AB=
;
(2)在Rt△ABP中,∵PB2=AP2+AB2=x2+42=x2+16,
∴S=
•π•(
)2=
π•
(x2+16)=
x2+2π;
(3)∵OF∥PD∥BC,
而OP=OB,
∴OF为梯形PBCD的中位线,
∴OF=
(PD+BC)=
(4-x+4)=4-
x,
∵OF⊥CD,
∴当OF=
BP时,CD与半圆相切,
∴BP=2OF=2(4-
x)=8-x,
在Rt△ABP中,∵PB2=AP2+AB2,
∴(8-x)2=x2+42,解得x=3,
即x为3时,CD与半圆相切;
此时S=
x2+2π=
×9+2π=
π.
4
4
4
3 3 33 3 3;
(2)在Rt△ABP中,∵PB22=AP22+AB22=x22+422=x22+16,
∴S=
•π•(
)2=
π•
(x2+16)=
x2+2π;
(3)∵OF∥PD∥BC,
而OP=OB,
∴OF为梯形PBCD的中位线,
∴OF=
(PD+BC)=
(4-x+4)=4-
x,
∵OF⊥CD,
∴当OF=
BP时,CD与半圆相切,
∴BP=2OF=2(4-
x)=8-x,
在Rt△ABP中,∵PB2=AP2+AB2,
∴(8-x)2=x2+42,解得x=3,
即x为3时,CD与半圆相切;
此时S=
x2+2π=
×9+2π=
π.
1 1 12 2 2•π•(
)2=
π•
(x2+16)=
x2+2π;
(3)∵OF∥PD∥BC,
而OP=OB,
∴OF为梯形PBCD的中位线,
∴OF=
(PD+BC)=
(4-x+4)=4-
x,
∵OF⊥CD,
∴当OF=
BP时,CD与半圆相切,
∴BP=2OF=2(4-
x)=8-x,
在Rt△ABP中,∵PB2=AP2+AB2,
∴(8-x)2=x2+42,解得x=3,
即x为3时,CD与半圆相切;
此时S=
x2+2π=
×9+2π=
π.
PB PB PB2 2 2)22=
π•
(x2+16)=
x2+2π;
(3)∵OF∥PD∥BC,
而OP=OB,
∴OF为梯形PBCD的中位线,
∴OF=
(PD+BC)=
(4-x+4)=4-
x,
∵OF⊥CD,
∴当OF=
BP时,CD与半圆相切,
∴BP=2OF=2(4-
x)=8-x,
在Rt△ABP中,∵PB2=AP2+AB2,
∴(8-x)2=x2+42,解得x=3,
即x为3时,CD与半圆相切;
此时S=
x2+2π=
×9+2π=
π.
1 1 12 2 2π•
(x2+16)=
x2+2π;
(3)∵OF∥PD∥BC,
而OP=OB,
∴OF为梯形PBCD的中位线,
∴OF=
(PD+BC)=
(4-x+4)=4-
x,
∵OF⊥CD,
∴当OF=
BP时,CD与半圆相切,
∴BP=2OF=2(4-
x)=8-x,
在Rt△ABP中,∵PB2=AP2+AB2,
∴(8-x)2=x2+42,解得x=3,
即x为3时,CD与半圆相切;
此时S=
x2+2π=
×9+2π=
π.
1 1 14 4 4(x22+16)=
x2+2π;
(3)∵OF∥PD∥BC,
而OP=OB,
∴OF为梯形PBCD的中位线,
∴OF=
(PD+BC)=
(4-x+4)=4-
x,
∵OF⊥CD,
∴当OF=
BP时,CD与半圆相切,
∴BP=2OF=2(4-
x)=8-x,
在Rt△ABP中,∵PB2=AP2+AB2,
∴(8-x)2=x2+42,解得x=3,
即x为3时,CD与半圆相切;
此时S=
x2+2π=
×9+2π=
π.
π π π8 8 8x22+2π;
(3)∵OF∥PD∥BC,
而OP=OB,
∴OF为梯形PBCD的中位线,
∴OF=
(PD+BC)=
(4-x+4)=4-
x,
∵OF⊥CD,
∴当OF=
BP时,CD与半圆相切,
∴BP=2OF=2(4-
x)=8-x,
在Rt△ABP中,∵PB2=AP2+AB2,
∴(8-x)2=x2+42,解得x=3,
即x为3时,CD与半圆相切;
此时S=
x2+2π=
×9+2π=
π.
1 1 12 2 2(PD+BC)=
(4-x+4)=4-
x,
∵OF⊥CD,
∴当OF=
BP时,CD与半圆相切,
∴BP=2OF=2(4-
x)=8-x,
在Rt△ABP中,∵PB2=AP2+AB2,
∴(8-x)2=x2+42,解得x=3,
即x为3时,CD与半圆相切;
此时S=
x2+2π=
×9+2π=
π.
1 1 12 2 2(4-x+4)=4-
x,
∵OF⊥CD,
∴当OF=
BP时,CD与半圆相切,
∴BP=2OF=2(4-
x)=8-x,
在Rt△ABP中,∵PB2=AP2+AB2,
∴(8-x)2=x2+42,解得x=3,
即x为3时,CD与半圆相切;
此时S=
x2+2π=
×9+2π=
π.
1 1 12 2 2x,
∵OF⊥CD,
∴当OF=
BP时,CD与半圆相切,
∴BP=2OF=2(4-
x)=8-x,
在Rt△ABP中,∵PB2=AP2+AB2,
∴(8-x)2=x2+42,解得x=3,
即x为3时,CD与半圆相切;
此时S=
x2+2π=
×9+2π=
π.
1 1 12 2 2BP时,CD与半圆相切,
∴BP=2OF=2(4-
x)=8-x,
在Rt△ABP中,∵PB2=AP2+AB2,
∴(8-x)2=x2+42,解得x=3,
即x为3时,CD与半圆相切;
此时S=
x2+2π=
×9+2π=
π.
1 1 12 2 2x)=8-x,
在Rt△ABP中,∵PB22=AP22+AB22,
∴(8-x)22=x22+422,解得x=3,
即x为3时,CD与半圆相切;
此时S=
x2+2π=
×9+2π=
π.
π π π8 8 8x22+2π=
×9+2π=
π.
π π π8 8 8×9+2π=
π.
25 25 258 8 8π.

∴当OE=BK时,四边形OBKE为平行四边形,
而OB=OE,
∴此时四边形OBKE为菱形,
连接OK,如图,
∵OB=BK=OK,
∴△OBK为等边三角形,
∴∠OBK=60°,
∴∠ABP=30°,
在Rt△ABP中,∵AP=x,AB=4,
∴x=
| ||
3 |
4
| ||
3 |
(2)在Rt△ABP中,∵PB2=AP2+AB2=x2+42=x2+16,
∴S=
1 |
2 |
PB |
2 |
1 |
2 |
1 |
4 |
π |
8 |
(3)∵OF∥PD∥BC,
而OP=OB,
∴OF为梯形PBCD的中位线,
∴OF=
1 |
2 |
1 |
2 |
1 |
2 |
∵OF⊥CD,
∴当OF=
1 |
2 |
∴BP=2OF=2(4-
1 |
2 |
在Rt△ABP中,∵PB2=AP2+AB2,
∴(8-x)2=x2+42,解得x=3,
即x为3时,CD与半圆相切;
此时S=
π |
8 |
π |
8 |
25 |
8 |
| ||
3 |
3 |
3 |
3 |
4
| ||
3 |
(2)在Rt△ABP中,∵PB2=AP2+AB2=x2+42=x2+16,
∴S=
1 |
2 |
PB |
2 |
1 |
2 |
1 |
4 |
π |
8 |
(3)∵OF∥PD∥BC,
而OP=OB,
∴OF为梯形PBCD的中位线,
∴OF=
1 |
2 |
1 |
2 |
1 |
2 |
∵OF⊥CD,
∴当OF=
1 |
2 |
∴BP=2OF=2(4-
1 |
2 |
在Rt△ABP中,∵PB2=AP2+AB2,
∴(8-x)2=x2+42,解得x=3,
即x为3时,CD与半圆相切;
此时S=
π |
8 |
π |
8 |
25 |
8 |
4
| ||
3 |
3 |
3 |
3 |
(2)在Rt△ABP中,∵PB22=AP22+AB22=x22+422=x22+16,
∴S=
1 |
2 |
PB |
2 |
1 |
2 |
1 |
4 |
π |
8 |
(3)∵OF∥PD∥BC,
而OP=OB,
∴OF为梯形PBCD的中位线,
∴OF=
1 |
2 |
1 |
2 |
1 |
2 |
∵OF⊥CD,
∴当OF=
1 |
2 |
∴BP=2OF=2(4-
1 |
2 |
在Rt△ABP中,∵PB2=AP2+AB2,
∴(8-x)2=x2+42,解得x=3,
即x为3时,CD与半圆相切;
此时S=
π |
8 |
π |
8 |
25 |
8 |
1 |
2 |
PB |
2 |
1 |
2 |
1 |
4 |
π |
8 |
(3)∵OF∥PD∥BC,
而OP=OB,
∴OF为梯形PBCD的中位线,
∴OF=
1 |
2 |
1 |
2 |
1 |
2 |
∵OF⊥CD,
∴当OF=
1 |
2 |
∴BP=2OF=2(4-
1 |
2 |
在Rt△ABP中,∵PB2=AP2+AB2,
∴(8-x)2=x2+42,解得x=3,
即x为3时,CD与半圆相切;
此时S=
π |
8 |
π |
8 |
25 |
8 |
PB |
2 |
1 |
2 |
1 |
4 |
π |
8 |
(3)∵OF∥PD∥BC,
而OP=OB,
∴OF为梯形PBCD的中位线,
∴OF=
1 |
2 |
1 |
2 |
1 |
2 |
∵OF⊥CD,
∴当OF=
1 |
2 |
∴BP=2OF=2(4-
1 |
2 |
在Rt△ABP中,∵PB2=AP2+AB2,
∴(8-x)2=x2+42,解得x=3,
即x为3时,CD与半圆相切;
此时S=
π |
8 |
π |
8 |
25 |
8 |
1 |
2 |
1 |
4 |
π |
8 |
(3)∵OF∥PD∥BC,
而OP=OB,
∴OF为梯形PBCD的中位线,
∴OF=
1 |
2 |
1 |
2 |
1 |
2 |
∵OF⊥CD,
∴当OF=
1 |
2 |
∴BP=2OF=2(4-
1 |
2 |
在Rt△ABP中,∵PB2=AP2+AB2,
∴(8-x)2=x2+42,解得x=3,
即x为3时,CD与半圆相切;
此时S=
π |
8 |
π |
8 |
25 |
8 |
1 |
4 |
π |
8 |
(3)∵OF∥PD∥BC,
而OP=OB,
∴OF为梯形PBCD的中位线,
∴OF=
1 |
2 |
1 |
2 |
1 |
2 |
∵OF⊥CD,
∴当OF=
1 |
2 |
∴BP=2OF=2(4-
1 |
2 |
在Rt△ABP中,∵PB2=AP2+AB2,
∴(8-x)2=x2+42,解得x=3,
即x为3时,CD与半圆相切;
此时S=
π |
8 |
π |
8 |
25 |
8 |
π |
8 |
(3)∵OF∥PD∥BC,
而OP=OB,
∴OF为梯形PBCD的中位线,
∴OF=
1 |
2 |
1 |
2 |
1 |
2 |
∵OF⊥CD,
∴当OF=
1 |
2 |
∴BP=2OF=2(4-
1 |
2 |
在Rt△ABP中,∵PB2=AP2+AB2,
∴(8-x)2=x2+42,解得x=3,
即x为3时,CD与半圆相切;
此时S=
π |
8 |
π |
8 |
25 |
8 |
1 |
2 |
1 |
2 |
1 |
2 |
∵OF⊥CD,
∴当OF=
1 |
2 |
∴BP=2OF=2(4-
1 |
2 |
在Rt△ABP中,∵PB2=AP2+AB2,
∴(8-x)2=x2+42,解得x=3,
即x为3时,CD与半圆相切;
此时S=
π |
8 |
π |
8 |
25 |
8 |
1 |
2 |
1 |
2 |
∵OF⊥CD,
∴当OF=
1 |
2 |
∴BP=2OF=2(4-
1 |
2 |
在Rt△ABP中,∵PB2=AP2+AB2,
∴(8-x)2=x2+42,解得x=3,
即x为3时,CD与半圆相切;
此时S=
π |
8 |
π |
8 |
25 |
8 |
1 |
2 |
∵OF⊥CD,
∴当OF=
1 |
2 |
∴BP=2OF=2(4-
1 |
2 |
在Rt△ABP中,∵PB2=AP2+AB2,
∴(8-x)2=x2+42,解得x=3,
即x为3时,CD与半圆相切;
此时S=
π |
8 |
π |
8 |
25 |
8 |
1 |
2 |
∴BP=2OF=2(4-
1 |
2 |
在Rt△ABP中,∵PB2=AP2+AB2,
∴(8-x)2=x2+42,解得x=3,
即x为3时,CD与半圆相切;
此时S=
π |
8 |
π |
8 |
25 |
8 |
1 |
2 |
在Rt△ABP中,∵PB22=AP22+AB22,
∴(8-x)22=x22+422,解得x=3,
即x为3时,CD与半圆相切;
此时S=
π |
8 |
π |
8 |
25 |
8 |
π |
8 |
π |
8 |
25 |
8 |
π |
8 |
25 |
8 |
25 |
8 |
看了如图,正方形ABCD的边长为4...的网友还看了以下:
如图,以正方形ABCD的边CD为直径作圆O,以顶点C为圆心、边CB为半径作弧BD,E为BC的延长线 2020-05-16 …
在Rt△ABC中,∠ACB=90°,CD⊥AB于D,以CD为半径作⊙C与AE切于E点,过B作BM‖ 2020-06-05 …
如图,平行四边形ABCD的面积为acm2,对角线交于点O;以AB、AO为邻边作平行四边形AOC1B 2020-06-18 …
2.选出与“我辈无义之人”中的“之”字用法相同的一项()(此题考虚词“之”的用法)A、吾欲之南海B 2020-06-26 …
一道找规律数学题已知Rt△ABC,D1是斜边AB的中点,过D1作D1E1⊥AC于E1连接BE1交C 2020-07-09 …
已知等边三角形ABC,D是边BC的中点.过D作DE//AB于E,连结BE交AD于D1,过D1作D1 2020-07-22 …
10、下列属于公务员免职情形的有()A、职务晋升B、非公派的离职学习连续一年以上的C、退休D、因健 2020-07-23 …
已知:线段AC,如图1.求作:以线段AC为对角线的一个菱形ABCD.作法:(1)作线段AC的垂直平分 2020-11-06 …
填空。(1)《饮酒》作者为,字,又名,世称先生,《饮酒》是一首言组诗,共首,写于作者以后。(2)《行 2020-11-29 …
已知正方形ABCD边长为1,延长BC至已知正方形ABCD边长为1,延长BC至点E,以CE为一边做正方 2020-12-25 …