早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知函数f(x)=ex-e-x,实数x,y满足f(x2-2x)+f(2y-y2)≥0,若点M(1,2),N(x,y),则当1≤x≤4时,OM•ON的最大值为(其中O为坐标原点)

题目详情
已知函数f(x)=ex-e-x,实数x,y满足f(x2-2x)+f(2y-y2)≥0,若点M(1,2),N(x,y),则当1≤x≤4时,
OM
ON
的最大值为______(其中O为坐标原点)
▼优质解答
答案和解析
∵f(x)=ex-e-x,∴f(-x)=e-x-ex=-f(x),
∴函数f(x)=ex-e-x为奇函数,
又易判f(x)=ex-e-x=ex-
1
ex
为R上的增函数,
∴f(x2-2x)+f(2y-y2)≥0可化为f(x2-2x)≥-f(2y-y2),
由奇函数的性质可得f(x2-2x)≥f(-2y+y2),
∴x2-2x≥-2y+y2,变形可得(x-y)(x+y-2)≥0,
又∵点M(1,2),N(x,y),∴
OM
ON
=x+2y,
问题转化为在
(x−y)(x+y−2)≥0
1≤x≤4
之下,求z=x+2y的最大值的线性规划问题,

作出图象可知当目标直线(红色)经过图中的点A时,z=x+2y取最大值,
联立
y=x
x=4
可解x=4,y=4,即A(4,4),
代入计算可得z=x+2y的最大值为zmax=4+2×4=12.
故答案为:12