早教吧作业答案频道 -->数学-->
已知n为正偶数,用数学归纳法证明时,若已假设n=k(k≥2,k为偶数)时命题为真,则还需要用归纳假设再证n=()时等式成立。
题目详情
已知n为正偶数,用数学归纳法证明 时,若已假设n=k(k≥2,k为偶数)时命题为真,则还需要用归纳假设再证n=( )时等式成立。 |
▼优质解答
答案和解析
| k+2 |
看了已知n为正偶数,用数学归纳法证...的网友还看了以下:
一个与正整数n有关的命题,当n=2时成立,且由n=K时成立可推得n=K+2时也成立.()A 命题对 2020-05-16 …
已知n是正偶数,用数学归纳法证明某命题时,若已假设n=k(k≥2且为偶数)时命题为真,则还需证明( 2020-06-11 …
已知n为正偶数,用数学归纳法证明1-12+13-14+…+1n-1-1n=2(1n+2+1n+4+ 2020-06-11 …
数学归纳法有分第一数学归纳法,逆向归纳法,螺旋归纳法,二重数学归纳法!(1)当n=1,2时,命题成 2020-08-01 …
第二数学归纳法事是什么?(1)奠基:证明n=1时命题成立;(2)归纳假设:设n≤k时命题成立(3) 2020-08-01 …
已知n为正偶数,用数学归纳法证明()1时,若已假设n=k(k≥2为偶数)时命题为真,则还需要用归纳 2020-08-01 …
数学归纳法一个关于自然数n的命题,若验证n=1时命题成立,并假设n=k时命题成立的基础上,证明了n 2020-08-03 …
已知n为正偶数,用数学归纳法证明1-12+13-14+…+1n−1=2(1n+2+1n+4+…+12 2020-11-07 …
已知n为正偶数,用数学归纳法证明1−12+13−14+…+1n+1=2(1n+2+1n+4+…+12 2020-11-07 …
已知n为正偶数,用数学归纳法证明时,若已假设n=k(k≥2,k为偶数)时命题为真,则还需要用归纳假设 2020-12-05 …
时,若已假设n=k(k≥2,k为偶数)时命题为真,则还需要用归纳假设再证n=( )时等式成立。