早教吧作业答案频道 -->数学-->
若数列{bn}:对于任意的n∈N*,都有bn+2-bn=d(常数),则称数列{bn}是公差为d的准等差数列.(1)设数列{an}满足:a1=a,对于任意的n∈N*,都有an+an+1=2n,证明:{an}为准等差数列,并求其通项
题目详情
若数列{bn}:对于任意的n∈N*,都有bn+2-bn=d(常数),则称数列{bn}是公差为d的准等差数列.
(1)设数列{an}满足:a1=a,对于任意的n∈N*,都有an+an+1=2n,证明:{an}为准等差数列,并求其通项公式.
(2)设(1)中的数列{an}的前n项和为Sn,试问:是否存在实数a,使得数列{Sn}有连续的两项都等于50?若存在,求出a的值;若不存在,请说明理由.
(1)设数列{an}满足:a1=a,对于任意的n∈N*,都有an+an+1=2n,证明:{an}为准等差数列,并求其通项公式.
(2)设(1)中的数列{an}的前n项和为Sn,试问:是否存在实数a,使得数列{Sn}有连续的两项都等于50?若存在,求出a的值;若不存在,请说明理由.
▼优质解答
答案和解析
(1)证明:∵a1=a,对于任意的n∈N*,都有an+an+1=2n,∴a2=2-a,an+1+an+2=2(n+1),相减可得:an+2-an=2,∴{an}为准等差数列.∴{an}的奇数项与偶数项都成等差数列,公差为2,a2k-1=a+2(k-1)=a+2k-2,a2k=2-a...
看了若数列{bn}:对于任意的n∈...的网友还看了以下:
设函数fn(x)=xn+bx+c(n∈N+,b,c∈R)(1)设n≥2,b=1,c=-1,证明:设函 2020-03-30 …
初等数论第4次作业 1.论述题 求2545与360的最大公约数.2.论述题 证明:设m,n为整数, 2020-05-16 …
是不是对于所有n×n的矩阵A,都可以有A^k的幂运算呢,那怎么保证A^(k-1)·A=A·A^(k 2020-06-10 …
n是任意自然数,求证4不能整除n^2+2考虑n分别是奇数/偶数事的情况n是奇数的时候很显然n^2+ 2020-07-30 …
设a,b及√a+√b都是整数,证明√a及√b都是整数.我知道这个怎么证明的,但证明中我有一步搞不懂 2020-07-30 …
关于数学归纳法的的疑惑以前做题都是硬记结论然后套用,证当n=1时...假设n=k时成立,证n=k+ 2020-08-01 …
数学归纳法为什么要设k?数学归纳法证明的第二步是先设n=k假设n=k时命题成立证明n=k+1时命题 2020-08-01 …
用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3·5·…(2n-1)(n∈N*)时, 2020-08-03 …
设数列{an}的前n项的和为Sn,且Sn=4/3an-1/3乘以2^(n+1)+2/3(n属于N,n 2020-11-01 …
数论第一次作业1.求2545与360的最大公约数.2.求487与468的最小公倍数.3.求1001! 2020-11-06 …