早教吧作业答案频道 -->数学-->
圆心角(2) (17 20:49:12)O的半径OC,OD与弦AB交于点E,F,且AE=BF.求证:AC弧=BD弧.已知:在四边形ABCD中,以A为圆心,AB为半径作圆,交AD,BC于点F,G,延长BA交A于点E.求证:EF弧=FG弧AB是O的直径,弦PQ交AB于点M,
题目详情
圆心角(2) (17 20:49:12)
O的半径OC,OD与弦AB交于点E,F,且AE=BF.求证:AC弧=BD弧.
已知:在四边形ABCD中,以A为圆心,AB为半径作圆,交AD,BC于点F,G,延长BA交A于点E.求证:EF弧=FG弧
AB是O的直径,弦PQ交AB于点M,且PM=MO.求证:AP弧=三分之一BQ弧
O中弦AB,CD相交于点P,且AC弧=BD弧.求证:AP=DP.
A点是半圆上一个三等分点,B点是AN弧的中点,P是直径MN上一动点,已知O的半径为1,则AP+BP的最小值是多少?
O的半径OC,OD与弦AB交于点E,F,且AE=BF.求证:AC弧=BD弧.
已知:在四边形ABCD中,以A为圆心,AB为半径作圆,交AD,BC于点F,G,延长BA交A于点E.求证:EF弧=FG弧
AB是O的直径,弦PQ交AB于点M,且PM=MO.求证:AP弧=三分之一BQ弧
O中弦AB,CD相交于点P,且AC弧=BD弧.求证:AP=DP.
A点是半圆上一个三等分点,B点是AN弧的中点,P是直径MN上一动点,已知O的半径为1,则AP+BP的最小值是多少?
▼优质解答
答案和解析
1.
连接OA、OB
∵OA=OB
∴∠OAE=∠OBF(等腰三角形)
又∵AE=BF
∴△OAE≌△OBF
∴∠AOC=∠BOD
∴弧AC=弧BD
2.少了个平行四边形ABCD的条件吧
∵∠EAC与∠B所对的弧都是弧EFG
∴∠EAC=2∠B
∵∠EAD=∠B(平行四边形对边平行)
∴∠EAF=∠GAF
即弧EF=弧FG
3.缺少图,题目变得不严谨
延长PO交○O于R
∵PM=MO
∴∠P=∠AOP
又∵∠QOR与∠QPR所对弧相同
∴∠QOR=2∠QPR
∵∠POA=∠BOR(对顶角相等)
∴∠QOB=∠QOR+∠BOR=3∠P
即弧AP=1/3弧QB
4.连接AD
∵弧AC=弧BD
∴∠CDA=∠BAD
∴△PAD为等腰△
AP=PD
5.
连接OA、OB、AB
设OP=x
由余弦定理,知:
AP²=AO²+OP²-2AO*PO*cos∠AOP
∠AOP=120°
故AP=√(x²+x+1)
同理,得:
BP=√(x²-x+1)
令y=AP+BP=√(x²+x+1)+√(x²-x+1)
对x求导
由函数单调性知,在x的定义域[0,1]中,y单调递增.
故当OP为0时,y取最小值,即AP+BP|min=2
求导是高三的内容,以初二的知识可能不好理解,但是想不到更好的点子了.高初中的知识都快忘了,算了好一阵子,都是些基本概念题,LZ仔细看看本章的要点和例题吧,重点就多注意圆心角=圆周角的2倍这个关系就可以了,其他的只能多做题来练练反应.
连接OA、OB
∵OA=OB
∴∠OAE=∠OBF(等腰三角形)
又∵AE=BF
∴△OAE≌△OBF
∴∠AOC=∠BOD
∴弧AC=弧BD
2.少了个平行四边形ABCD的条件吧
∵∠EAC与∠B所对的弧都是弧EFG
∴∠EAC=2∠B
∵∠EAD=∠B(平行四边形对边平行)
∴∠EAF=∠GAF
即弧EF=弧FG
3.缺少图,题目变得不严谨
延长PO交○O于R
∵PM=MO
∴∠P=∠AOP
又∵∠QOR与∠QPR所对弧相同
∴∠QOR=2∠QPR
∵∠POA=∠BOR(对顶角相等)
∴∠QOB=∠QOR+∠BOR=3∠P
即弧AP=1/3弧QB
4.连接AD
∵弧AC=弧BD
∴∠CDA=∠BAD
∴△PAD为等腰△
AP=PD
5.
连接OA、OB、AB
设OP=x
由余弦定理,知:
AP²=AO²+OP²-2AO*PO*cos∠AOP
∠AOP=120°
故AP=√(x²+x+1)
同理,得:
BP=√(x²-x+1)
令y=AP+BP=√(x²+x+1)+√(x²-x+1)
对x求导
由函数单调性知,在x的定义域[0,1]中,y单调递增.
故当OP为0时,y取最小值,即AP+BP|min=2
求导是高三的内容,以初二的知识可能不好理解,但是想不到更好的点子了.高初中的知识都快忘了,算了好一阵子,都是些基本概念题,LZ仔细看看本章的要点和例题吧,重点就多注意圆心角=圆周角的2倍这个关系就可以了,其他的只能多做题来练练反应.
看了 圆心角(2) (17 20:...的网友还看了以下:
两道关于圆的题10.00结束问题!1.如图,AB是圆的直径,AC是圆的切线,切点为A,OC平行于弦B 2020-03-30 …
已知:如图,A,B,C是圆O上的三点,弦AG垂直于弦BC,垂足为点D,弦CG的长等于圆O的半径.求 2020-04-27 …
下列判断中正确的是()A.平分弦的直线垂直于弦B.平分弦的直线也必平分弦所对的两条弧C.弦的垂直平 2020-05-16 …
AB是圆O的直径AB=6角CAD=30度,求弦长DCOA是圆O的半径,以OA为直径的圆C与圆O的弦 2020-06-06 …
Ab是圆o的直径,ac是弦,过ac孤的中点,p作弦,pq垂直ab,交ab于d,求证pq=ac 2020-07-11 …
直线平分弦所对的弧1、已知直线平分弦,且平分所对的弧(优弧和劣弧),求证:直线过圆心2、已知直线垂 2020-07-14 …
一条直线经过圆心,且平分弦所对的劣弧,那么这条直线()A.只平分弦B.只平分弦所对的优弧C.只垂直 2020-07-31 …
下列说法正确的是()A.三个点确定一个圆B.弦长相等,则弦所对的弦心距也相等C.平分弦的直径垂直此 2020-08-01 …
下列判断正确的是()A.弦心距相等则弦也相等B.不与直径垂直的弦,不可能被该直径平分C.在两个圆中 2020-08-01 …
下列说法中,不成立的是()A.弦的垂直平分线必过圆心B.弧的中点与圆心的连线垂直平分这条弧所对的弦C 2020-12-05 …