早教吧作业答案频道 -->数学-->
若公比为c的等比数列{an}的首项为a1=1,且满足an=[a(n-1)+a(n-2)]/2(n=3,4...)求数列{nan}的前n项和
题目详情
若公比为c的等比数列{an}的首项为a1=1,且满足an=[a(n-1)+a(n-2)]/2(n=3,4...)求数列{nan}的前n项和
▼优质解答
答案和解析
an=[a(n-1)+a(n-2)]/2
a(n-1)=a1q^(n-2)=q^(n-2)
an=q^(n-1)
a(n-2)=q^(n-3)
q^(n-1)=[q^(n-2)+q^(n-3)]/2
q²=(q+1)/2
2q²-q-1=0
1 -1
2 1
(q-1)(2q+1)=0
q=1 q=-1/2
1)q=1
an=a1=1
bn=nan=n
Tn=1+2+3+...+n=n+n(n-1)/2=(n²+n)/2
2)q=-1/2
an=(-1/2)^(n-1)
bn=nan=n(-1/2)^(n-1)
b1=1
b2=2(-1/2)^1
b3=3/(-1/2)^2
Tn= 1+2(-1/2)^1+3(-1/2)^2+..+n(-1/2)^(n-1)
-Tn/2= (-1/2) +2(-1/2)^2+...+(n-1)(-1/2)^(n-1)+n(-1/2)^n
3Tn/2=1+(-1/2)+(-1/2)^2+..+(-1/2)^(n-1) -n(-1/2)^n
=[1-(-1/2)^n]/(3/2)-n(-1/2)^n
Tn=4[1-(-1/2)^n]/9-2/3n(-1/2)^n
a(n-1)=a1q^(n-2)=q^(n-2)
an=q^(n-1)
a(n-2)=q^(n-3)
q^(n-1)=[q^(n-2)+q^(n-3)]/2
q²=(q+1)/2
2q²-q-1=0
1 -1
2 1
(q-1)(2q+1)=0
q=1 q=-1/2
1)q=1
an=a1=1
bn=nan=n
Tn=1+2+3+...+n=n+n(n-1)/2=(n²+n)/2
2)q=-1/2
an=(-1/2)^(n-1)
bn=nan=n(-1/2)^(n-1)
b1=1
b2=2(-1/2)^1
b3=3/(-1/2)^2
Tn= 1+2(-1/2)^1+3(-1/2)^2+..+n(-1/2)^(n-1)
-Tn/2= (-1/2) +2(-1/2)^2+...+(n-1)(-1/2)^(n-1)+n(-1/2)^n
3Tn/2=1+(-1/2)+(-1/2)^2+..+(-1/2)^(n-1) -n(-1/2)^n
=[1-(-1/2)^n]/(3/2)-n(-1/2)^n
Tn=4[1-(-1/2)^n]/9-2/3n(-1/2)^n
看了 若公比为c的等比数列{an}...的网友还看了以下:
1.公差不为零的等差数列的第2、3、6项构成等比数列,则公比为?2.二次方程a(n) x^2-a( 2020-05-13 …
几道数列题二㊣小开(317052920) 14:49:021.正实数a,b,c成等差数列,c,a, 2020-05-17 …
下列三个命题,其中正确命题的个数是:1.若tanA乘tanB>1,则△ABC一定是钝角三角形2.若 2020-05-17 …
已知实数a,b,c成等差数列,a+1,b+1,c+4成等比数列,且a+b+c=15,求a,b,c 2020-05-21 …
排列31524的逆序列是多少?a[j]等于在排列中先于j但大于j的整数的个数;它量度j反序程度.数 2020-06-12 …
符合下列条件的三角形有且只有一个的是()A.a=1,b=2,c=3B.a=1,b=2,∠A=30° 2020-06-12 …
设有理数a、b、c均不为0,且a+b+c=0,求设有理数a、b、c均不为0,且a+b+c=0,求1 2020-06-14 …
整式综合1.求[8+2(k-1)][60-3(k-1)]的最小值.2.已知1/(a-b)+1/(b- 2020-10-31 …
三个不等于零数的平方等于一a平方+b平方+c平方=1(abc不等于零)A(B/1+C/1)+B(C/ 2020-11-18 …
已知a,b,c三个数满足ab/a+b=1/3,bc/b+c=1/4,ca/c+a=1/5,那么abc 2020-11-18 …