早教吧作业答案频道 -->数学-->
定义在R上的函数f(x),对任意x均有f (x)=f(x+2)+f (x-2)且f(2013)=2013,则f(2025)=______.
题目详情
定义在R上的函数f(x),对任意x均有f (x)=f(x+2)+f (x-2)且f(2013)=2013,则f(2025)=______.
▼优质解答
答案和解析
∵定义在R上的函数f(x),对任意x均有f (x)=f(x+2)+f (x-2),①
∴f(x+2)=f(x+4)+f(x),②
由①②,可得f(x-2)=-f(x+4),即f(x)=-f(x+6),
∴f(x+12)=f(x),
∴函数f(x)为周期函数,周期为T=12,
∵f(2013)=2013,
∴f(2025)=f(2025-12)=f(2013)=2013.
故答案为:2013.
∴f(x+2)=f(x+4)+f(x),②
由①②,可得f(x-2)=-f(x+4),即f(x)=-f(x+6),
∴f(x+12)=f(x),
∴函数f(x)为周期函数,周期为T=12,
∵f(2013)=2013,
∴f(2025)=f(2025-12)=f(2013)=2013.
故答案为:2013.
看了 定义在R上的函数f(x),对...的网友还看了以下:
已知定义在R上的f(x)为奇函数,有f(x-4)=-f(x),求周期因为-f(x)=f(-x)所以 2020-04-06 …
已知函数f(x)定义在R上,对∀x,y∈R,有f(x+y)+f(x-y)=2f(x)•f(y),且 2020-05-13 …
求证:函数y=f(a+x)与函数y=f(a-x)关于x=0对称,其中x∈R求证:函数y=f(a+x 2020-05-16 …
已知函数f(x)对任意实数x1,x2,都有f(x1x2)=f(x1)+f(x2)成立原题是:已知函 2020-05-17 …
定义在R上的函数f(x)对任意a,b∈R都有f(a+b)=f(a)+f(b)+k(k为常数).(I 2020-06-02 …
f(x)是定义在R上的函数,且对任意实数x,y都有f(x+y)=f(x)+f(y)-1成立,当f( 2020-06-02 …
函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,试比较f(1),f(2.5) 2020-06-08 …
已知函数f(x)的定义域为R,对于任意的x,y∈R,都有f(x+y)=f(x)+f(y),且当x> 2020-06-12 …
定义在R上的增函数y=f(x),对任意x,y∈R,都有f(x+y)=f(x)+f(y)(1)求f( 2020-07-20 …
试求出所有的函数f:R→R,使得对于任何的x,y∈R,都有f(x^2+y^2)=xf(x)+yf(y 2020-10-31 …