早教吧作业答案频道 -->数学-->
高一一道证明题已知S是两个整数平方和的集合,即S={x|x=m^2+n^2},m、n∈Z求证:1、若s、t∈S,则st∈S2、若s、t∈S,且t不为0,则s/t=p^2+q^2,其中p、q为有理数
题目详情
高一一道证明题
已知S是两个整数平方和的集合,即S={x|x=m^2+n^2},m、n∈Z
求证:1、若s、t∈S,则st∈S
2、若s、t∈S,且t不为0,则s/t=p^2+q^2,其中p、q为有理数
已知S是两个整数平方和的集合,即S={x|x=m^2+n^2},m、n∈Z
求证:1、若s、t∈S,则st∈S
2、若s、t∈S,且t不为0,则s/t=p^2+q^2,其中p、q为有理数
▼优质解答
答案和解析
证明:若s、t∈S,则:设s=a^2+b^2,t=c^2+d^2.
1.st=(a^2+b^2)(c^2+d^2)
=(ac)^2+(ad)^2+(bc)^2+(bd)^2
=(ac)^2+2abcd+(bd)^2+(ad)^2-2abcd+(bc)^2
=(ac+bd)^2+(ad-bc)^2
所以st∈S
2.s/t=st/t^2=(a^2+b^2)(c^2+d^2)/(c^2+d^2)^2
=[(ac+bd)^2+(ad-bc)^2]/(c^2+d^2)^2
=(ac+bd)^2/(c^2+d^2)^2+(ad-bc)^2/(c^2+d^2)^2
=p^2+q^2
1.st=(a^2+b^2)(c^2+d^2)
=(ac)^2+(ad)^2+(bc)^2+(bd)^2
=(ac)^2+2abcd+(bd)^2+(ad)^2-2abcd+(bc)^2
=(ac+bd)^2+(ad-bc)^2
所以st∈S
2.s/t=st/t^2=(a^2+b^2)(c^2+d^2)/(c^2+d^2)^2
=[(ac+bd)^2+(ad-bc)^2]/(c^2+d^2)^2
=(ac+bd)^2/(c^2+d^2)^2+(ad-bc)^2/(c^2+d^2)^2
=p^2+q^2
看了 高一一道证明题已知S是两个整...的网友还看了以下:
由若干盆花组成的三角形图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆总数是S:n=2 2020-05-13 …
括号内为下标:S(n)为a(n)的前n项和.a(1)=a,a(n+1)=S(n)+3^n.设b(n 2020-05-22 …
求14102035...的和值a(n)=n*(n+1)*(n+2)/6求S(n)即求下面公式的和值 2020-06-12 …
若S1=1,S(n+1)=3Sn+2求通项公式an这道题我是这样解的:当n=1时,a1=s1=1; 2020-07-20 …
数列求通项的问题数列a1=1a(n+1)=2Sn+1(打括号的n-1是下标)求{an}用S(n+1 2020-07-29 …
高中数学——数列已知有穷数列{a(n)},a(1)=2,前n项和为S(n),且a(n+1)=(a- 2020-08-02 …
N=2.3.4.5分别对应S=3.6.10.15.求S=多少N.(S与N的关系)N=2、3、4、5分 2020-11-03 …
S(n)是数列{a(n)}的前n项和,已知4S(n)=a(n)^2+2a(n)-3.求a(n)通项S 2020-12-17 …
一道高中数学集合题,高手帮帮忙啊!设S是集合{1,2,…,15}的一个非空子集,若正整数n满足:n∈ 2020-12-18 …
如何求S(n)=1^3+2^3+3^3+4^3+.+n^3帮我用n表示求和公式S(n),并附推算过程 2021-01-16 …