早教吧作业答案频道 -->其他-->
(2013•东坡区一模)若对于定义在R上的函数f(x),其图象是连续不断的,且存在常数λ(λ∈R)使得f(x+λ)+λf(x)=0对任意实数x都成立,则称f(x)是一个“λ-伴随函数”.有下列关于
题目详情
(2013•东坡区一模)若对于定义在R上的函数f(x),其图象是连续不断的,且存在常数λ(λ∈R)使得f(x+λ)+λf(x)=0对任意实数x都成立,则称f(x) 是一个“λ-伴随函数”.有下列关于“λ-伴随函数”的结论:
①f(x)=0 是常数函数中唯一个“λ-伴随函数”;
②f(x)=x不是“λ-伴随函数”;
③f(x)=x2是一个“λ-伴随函数”;
④“
-伴随函数”至少有一个零点.
其中不正确的序号是______(填上所有不正确的结论序号).
①f(x)=0 是常数函数中唯一个“λ-伴随函数”;
②f(x)=x不是“λ-伴随函数”;
③f(x)=x2是一个“λ-伴随函数”;
④“
1 |
2 |
其中不正确的序号是______(填上所有不正确的结论序号).
▼优质解答
答案和解析
①设f(x)=C是一个“λ-伴随函数”,则(1+λ)C=0,当λ=-1时,可以取遍实数集,因此f(x)=0不是唯一一个常值“λ-伴随函数”,故①不正确;
②∵f(x)=x,∴f(x+λ)+λf(x)=x+λ+λx,当λ=-1时,f(x+λ)+λf(x)=-1≠0;λ≠-1时,f(x+λ)+λf(x)=0有唯一解,∴不存在常数λ(λ∈R)使得f(x+λ)+λf(x)=0对任意实数x都成立,∴(x)=x不是“λ-伴随函数”,故②正确;
③用反证法,假设f(x)=x2是一个“λ-伴随函数”,则(x+λ)2+λx2=0,即(1+λ)x2+2λx+λ2=0对任意实数x成立,所以λ+1=2λ=λ2=0,而此式无解,所以f(x)=x2不是一个“λ-伴随函数”,故③不正确;
④令x=0,得f(
)+
f(0)=0,所以f(
)=-
f(0)
若f(0)=0,显然f(x)=0有实数根;若f(0)≠0,f(
)•f(0)=-
(f(0))2<0.
又因为f(x)的函数图象是连续不断,所以f(x)在(0,
)上必有实数根.因此任意的“
-伴随函数”必有根,即任意“
-伴随函数”至少有一个零点,故④正确
故答案为:①③
②∵f(x)=x,∴f(x+λ)+λf(x)=x+λ+λx,当λ=-1时,f(x+λ)+λf(x)=-1≠0;λ≠-1时,f(x+λ)+λf(x)=0有唯一解,∴不存在常数λ(λ∈R)使得f(x+λ)+λf(x)=0对任意实数x都成立,∴(x)=x不是“λ-伴随函数”,故②正确;
③用反证法,假设f(x)=x2是一个“λ-伴随函数”,则(x+λ)2+λx2=0,即(1+λ)x2+2λx+λ2=0对任意实数x成立,所以λ+1=2λ=λ2=0,而此式无解,所以f(x)=x2不是一个“λ-伴随函数”,故③不正确;
④令x=0,得f(
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
若f(0)=0,显然f(x)=0有实数根;若f(0)≠0,f(
1 |
2 |
1 |
2 |
又因为f(x)的函数图象是连续不断,所以f(x)在(0,
1 |
2 |
1 |
2 |
1 |
2 |
故答案为:①③
看了 (2013•东坡区一模)若对...的网友还看了以下:
函数y=f(x)的定义域为[-1,0)U(0,1],其图像上任一点P(x,y)满足x^2+y^2= 2020-04-27 …
函数y=f(x)的定义域为[-1,0)并上(0,1]其图像上的任意一点满足x^2+y^2=1则函数 2020-04-27 …
数学上一般用f(x)来表示关于x的函数,若存在x∈R,使f(x)=x则称x为f(x)的不动点.已知 2020-05-13 …
设f(x)=-2^(x)+a/2^(x+1)+b(a,b为实常数)的题设f(x)=-2^(x)+a 2020-05-13 …
已知定义在R的函数(a,b为实常数).(1)当a=b=1时,证明:f(x)不是奇函数;(2)设f( 2020-05-13 …
求证几个函数对称定理!50待加.1.函数f(x)定义域为R.求证y=f(x-m)与y=f(m-x) 2020-06-06 …
已知定义域为R的函数f(x)不是奇函数,则下列命题一定为真命题的是A任意x∈R,f(-x)≠-f( 2020-06-09 …
关于x的函数f(x)=cos(x+a)有以下命题:(1)对任意a,f(x)都是非奇非偶函数;(2) 2020-06-09 …
关于x的函数f(x)=sin(x+φ)有以下命题:①对任意的φ,f(x)都是非奇非偶函数;②不存在 2020-06-28 …
对于函数f(x)=(ax+1)/(x-1),其中a为实数,x不等于1,给出下列命题(1)、a=1时 2020-07-01 …