早教吧作业答案频道 -->数学-->
设关于x的函数f(x)=mx2-(2m2+4m+1)x+(m+2)lnx,其中m为R上的常数,若函数f(x)在x=1处取得极大值0.(1)求实数m的值;(2)若函数f(x)的图象与直线y=k有两个交点,求实数k的取值范围
题目详情
设关于x的函数f(x)=mx2-(2m2+4m+1)x+(m+2)lnx,其中m为R上的常数,若函数f(x)在x=1处取得极大值0.
(1)求实数m的值;
(2)若函数f(x)的图象与直线y=k有两个交点,求实数k的取值范围;
(3)设函数g(x)=(p−2)x+
,若对任意的x∈[1,2],2f(x)≥g(x)+4x-2x2恒成立,求实数p的取值范围.
(1)求实数m的值;
(2)若函数f(x)的图象与直线y=k有两个交点,求实数k的取值范围;
(3)设函数g(x)=(p−2)x+
p+2 |
x |
▼优质解答
答案和解析
(1)f′(x)=2mx−(2m2+4m+1)+
=
因为函数f(x)在x=1处取得极大值0
所以,
解m=-1
(2)由(1)知f′(x)=
,令f'(x)=0得x=1或x=−
(舍去)
所以函数f(x)在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,
所以,当x=1时,函数f(x)取得最大值,f(1)=ln1-1+1=0
当x≠1时,f(x)<f(1),即f(x)<0
所以,当k<0时,函数f(x)的图象与直线y=k有两个交点,
(3)设F(x)=2f(x)−g(x)−4x+2x2=2lnx−px−
F′(x)=
−p+
=
当p=0时,F′(x)=
>0,F(x)在[1,2]递增,F(1)=-2<0不成立,(舍)
当p≠0时F′(x)=
当1+
<−1,即-1<p<0时,F(x)在[1,2]递增,F(1)=-2p-2<0,不成立
当−1<1+
≤1,即p<-1时,F(x)在[1,2]递增,所以F(1)=-2p-2≥0,解得p≤-1,所以,此时p<-1
当p=-1时,F(x)在[1,2]递增,成立;
当p>0时,F(1)=-2p-2<0不成立,
综上,p≤-1
m+2 |
x |
(2mx−1)[x−(m+2)] |
x |
因为函数f(x)在x=1处取得极大值0
所以,
|
(2)由(1)知f′(x)=
(−2x−1)(x−1) |
x |
1 |
2 |
所以函数f(x)在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,
所以,当x=1时,函数f(x)取得最大值,f(1)=ln1-1+1=0
当x≠1时,f(x)<f(1),即f(x)<0
所以,当k<0时,函数f(x)的图象与直线y=k有两个交点,
(3)设F(x)=2f(x)−g(x)−4x+2x2=2lnx−px−
p+2 |
x |
2 |
x |
p+2 |
x2 |
−px2+2x+(p+2) |
x2 |
当p=0时,F′(x)=
2x+2 |
x2 |
当p≠0时F′(x)=
−p(x+1)(x−
| ||
x2 |
当1+
2 |
p |
当−1<1+
2 |
p |
当p=-1时,F(x)在[1,2]递增,成立;
当p>0时,F(1)=-2p-2<0不成立,
综上,p≤-1
看了 设关于x的函数f(x)=mx...的网友还看了以下:
请问刘老师,关于设矩阵A=(k 1 1 1 1 k 1 1 1 1 k 1 1 1 1 k) 且R 2020-05-16 …
已知关于x的方程k^2x^2=(2k-1)x+1+0有两个不相等的实数根x1,x2,求k的取值范围 2020-05-16 …
在等腰梯形OABC(O为坐标原点)中,点A的坐标为(4,0),OA‖CB,点C在双曲线Y=K/X( 2020-05-17 …
已知等差数列{an}的公差d>0,设{an}的前几项和为Sn,a1=1,S2×S3=36,求m,k 2020-07-17 …
(K-1)/(X-1)--X/(X-1)=0求k(K-1)/(X-1)--X/(X-1)=0有增根 2020-07-31 …
已知函数f(x)=lnx+k/x,x属于R,若函数f(x)的单调减区间为(0,1),求实数k的值. 2020-08-01 …
(2013•孝感)已知关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根x1,x 2020-08-03 …
线形代数中的特征向量求出K的值,使得α=是A=的特征向量,并求出对应的特征值.答案是由Aα=1/α可 2020-11-20 …
线形代数特征向量求出K的值,使得列向量α=(1,k,1)^T是A=(2,1,1;1,2,1;1,1, 2020-11-20 …
已知x,y为有理数,且x≠0,y≠0,求|x|/x+|y|/y的值.①已知x,y,z为有理数,且x≠ 2020-12-31 …