早教吧 育儿知识 作业答案 考试题库 百科 知识分享

求解一条高数题!求函数f(x.y)=x^3+y^3-3(x^2+y^2)的极值.

题目详情
求解一条高数题!
求函数 f(x.y)=x^3+y^3-3(x^2+y^2)的极值.
▼优质解答
答案和解析
f'x = 3*x^2 - 6*x=0 f'y = 3*y^2 - 6*y=0, 解得柱点,(0,0) , (0,2), (2,0), (2,2) . f'xx = 6*x - 6 , f'xy = 0, f'yy = 6*y - 6 , 分别讨论,在柱点(0,0)处, AC- B^2 > 0, 且A0 , 有极小值- 8