早教吧作业答案频道 -->数学-->
微分的概念性问题我们知道微分中有dy=A ·(⊿x),为什么又出来个dy=A ·dx?dx和 (⊿x)有什么区别?微分的求法是不是求一个复杂函数的导数,最后乘个dx?假如dy=4dx,那么当x=0时,dy=4dx还是dy=4d0,还
题目详情
微分的概念性问题
我们知道微分中有dy=A ·(⊿x),为什么又出来个dy=A ·dx?dx和 (⊿x)有什么区别?微分的求法是不是求一个复杂函数的导数,最后乘个dx?假如dy=4dx,那么当x=0时,dy=4dx还是dy=4d0,还是dy=0?为什么?
课本上的微分感觉好枯燥.(其实我觉得我的问题很基础.
我们知道微分中有dy=A ·(⊿x),为什么又出来个dy=A ·dx?dx和 (⊿x)有什么区别?微分的求法是不是求一个复杂函数的导数,最后乘个dx?假如dy=4dx,那么当x=0时,dy=4dx还是dy=4d0,还是dy=0?为什么?
课本上的微分感觉好枯燥.(其实我觉得我的问题很基础.
▼优质解答
答案和解析
微分dy的理解.
⊿x指自变量x的变化量,是非无限小变化量.
dx是指x的无限小变化量.
⊿y指在自变量变化⊿x的时候y的变化量.
dy是指,在自变量x无限小变化量dx的基础上,因变量y的相应的变化量.
lim ⊿y/⊿x 当x变化量趋于无限小的时候 这种变化率,称为导数f'(x).即dy/dx.
导数f'(x)是自变量无限小变化时的函数相对于自变量的变化率.即 f'(x)=dy/dx.
自然 dy = f'(x) dx
因为f'(x)是自变量无限小变化dx的变化率,而dy也是在无限小自变量变化下才会等于无限小⊿x变化下的⊿y.
当dx给定非无限小的一个量比如⊿x的时候,自然所谓的算出的dy(其实是另一种[⊿y],不是dy,因为dy是在dx无限小情况下的,也不是⊿y,因为这个[⊿y]是用f'(x)dx算出来的,而f'(x)这个变化率是⊿x无限小的变化率⊿y/⊿x)不可能是⊿y,这个所谓的dy只能是⊿y的线性主部.
导数,微分,不定积分,定积分
导数是求极限,f'(x),当dx时候dy的变化率,即dy/dx
微分dy是在dx变化下的变化,因为f'(x)是自变量变化趋于零的极限变化率,所以dx可以理解为自变量的微分,dy理解为函数的微分,都是无限小的变化,只不过dy是依赖于dx的.但是一旦dx取定为非零值,那么dy就是函数y变化的线性主部.
不定积分
是求一个函数的原函数
定积分
是求值,从几何意义上理解,是求面积.
函数相对于自变量的瞬时变化率,即自变量变化趋于零的时候,这个极限,被定义为导数,引进符号f'(x),来表示.
自变量的趋于零的变化,引进dx来表示,称为自变量微分.当自变量变化为dx的时候,引进dy来表示函数的变化,称为函数微分.
所以有了dy = f'(x)dx,这里f'(x)与dx是乘积的关系.
当知道一个函数F(x)的微分dF(x)或者导数f'(x)的时候,为了求得这个函数,引进了不定积分概念.
∫f'(x)dx 或者 fdF(x)
不定积分是为了求一个函数,原函数.
当知道一个函数,为了求这个函数在某个区间的,自变量的微分与函数值的乘积的累积和,引进的定积分概念.
定积分是为了求一个值.
⊿x指自变量x的变化量,是非无限小变化量.
dx是指x的无限小变化量.
⊿y指在自变量变化⊿x的时候y的变化量.
dy是指,在自变量x无限小变化量dx的基础上,因变量y的相应的变化量.
lim ⊿y/⊿x 当x变化量趋于无限小的时候 这种变化率,称为导数f'(x).即dy/dx.
导数f'(x)是自变量无限小变化时的函数相对于自变量的变化率.即 f'(x)=dy/dx.
自然 dy = f'(x) dx
因为f'(x)是自变量无限小变化dx的变化率,而dy也是在无限小自变量变化下才会等于无限小⊿x变化下的⊿y.
当dx给定非无限小的一个量比如⊿x的时候,自然所谓的算出的dy(其实是另一种[⊿y],不是dy,因为dy是在dx无限小情况下的,也不是⊿y,因为这个[⊿y]是用f'(x)dx算出来的,而f'(x)这个变化率是⊿x无限小的变化率⊿y/⊿x)不可能是⊿y,这个所谓的dy只能是⊿y的线性主部.
导数,微分,不定积分,定积分
导数是求极限,f'(x),当dx时候dy的变化率,即dy/dx
微分dy是在dx变化下的变化,因为f'(x)是自变量变化趋于零的极限变化率,所以dx可以理解为自变量的微分,dy理解为函数的微分,都是无限小的变化,只不过dy是依赖于dx的.但是一旦dx取定为非零值,那么dy就是函数y变化的线性主部.
不定积分
是求一个函数的原函数
定积分
是求值,从几何意义上理解,是求面积.
函数相对于自变量的瞬时变化率,即自变量变化趋于零的时候,这个极限,被定义为导数,引进符号f'(x),来表示.
自变量的趋于零的变化,引进dx来表示,称为自变量微分.当自变量变化为dx的时候,引进dy来表示函数的变化,称为函数微分.
所以有了dy = f'(x)dx,这里f'(x)与dx是乘积的关系.
当知道一个函数F(x)的微分dF(x)或者导数f'(x)的时候,为了求得这个函数,引进了不定积分概念.
∫f'(x)dx 或者 fdF(x)
不定积分是为了求一个函数,原函数.
当知道一个函数,为了求这个函数在某个区间的,自变量的微分与函数值的乘积的累积和,引进的定积分概念.
定积分是为了求一个值.
看了 微分的概念性问题我们知道微分...的网友还看了以下:
若2.5:X=Y:0.8成什么比例,因为.若3X-4Y=0,X和Y成什么比例,因为.是X和Y成什么 2020-05-23 …
laplace变换求解微分方程y"+4y'+4y=25cosx,y(0)=1,y'(0)=-1和y 2020-06-05 …
(2012•虹口区二模)如图,平面直角坐标系中,射线y=x(x≥0)和y=0(x≥0)上分别依次有 2020-07-09 …
如图,在x轴上有两点A(-3,0)和B(3,0),有一动点C在线段AB上从点A运动到点B(不与A, 2020-07-14 …
在一本书上写着方程组x+py=0和x+y=1的解是x=0.5和y=?其中y被墨汁盖住了,不过还是可 2020-07-28 …
关于直角坐标平面内的直线旋转问题()一条直线y=kx+b绕原点逆时针(或顺时针)旋转n度后是怎样的 2020-07-30 …
已知一次函数y=ax+b(a≠0)和y=kx(k≠0)图象交点坐标为(2,-3),则二元一次方程组 2020-08-03 …
如图,已知一次函数y=ax+b(a≠0)和y=kx(k≠0)的图象交于点P,则二元一次方程组y−a 2020-08-03 …
反比例函数题着重讲解下第三问如图,已知直线l经过点A(1,0),与双曲线y=mx(x>0)交于点B( 2020-12-18 …
如图,若点M是y轴正半轴上任意一点,过点M作PQ∥x轴,分别交函数y=kcx(x<0)和y=k图x( 2021-02-04 …