早教吧作业答案频道 -->数学-->
1.设函数f(x)=2x^2+3tx+2t的最小值为g(t),求g(t)的解析式,并求出当t为何值时g(t)可取得最大值.2.已知关于x的二次函数f(x)=2(k+1)x^2+4x+3k-2在区间(0,1)上单调递增,求实数k的取值范围.3.在只剩一堵墙的
题目详情
1.设函数f(x)=2x^2+3tx+2t的最小值为g(t),求g(t)的解析式,并求出当t为何值时g(t)可取得最大值.
2.已知关于x的二次函数f(x)=2(k+1)x^2+4x+3k-2在区间(0,1)上单调递增,求实数k的取值范围.
3.在只剩一堵墙的破屋上修建新房,旧墙长12米,新屋的面积预定为112平方米,已知(1)修理旧墙的费用相当于砌新墙的25%;(2)拆旧墙的一部分,利用旧料来砌新墙,这费用相当于砌新墙的50%.问:在这种情况下,应以何种方式来利用旧墙最为合算?
4.函数y=1+1/(x+a)的图像在(-∞,-1)上减函数,则a的范围是
5.银行一年期储蓄的年利率为1.98%,并且每存满一年就将这一年的利息加入本金中,作为下一年的本金,设本金为1万元,这样经过x年后本金利息和为原来的y倍,试写出y关于x的函数关系式,并求出第10年时的本息和(精确到元).
6.若2x+y=1,求4^x+2^y的最小值.
7.若x满足3/(x+1)≥1,求函数y=4^x-2^(x+1)的最值.
条理清晰有加分.
2.已知关于x的二次函数f(x)=2(k+1)x^2+4x+3k-2在区间(0,1)上单调递增,求实数k的取值范围.
3.在只剩一堵墙的破屋上修建新房,旧墙长12米,新屋的面积预定为112平方米,已知(1)修理旧墙的费用相当于砌新墙的25%;(2)拆旧墙的一部分,利用旧料来砌新墙,这费用相当于砌新墙的50%.问:在这种情况下,应以何种方式来利用旧墙最为合算?
4.函数y=1+1/(x+a)的图像在(-∞,-1)上减函数,则a的范围是
5.银行一年期储蓄的年利率为1.98%,并且每存满一年就将这一年的利息加入本金中,作为下一年的本金,设本金为1万元,这样经过x年后本金利息和为原来的y倍,试写出y关于x的函数关系式,并求出第10年时的本息和(精确到元).
6.若2x+y=1,求4^x+2^y的最小值.
7.若x满足3/(x+1)≥1,求函数y=4^x-2^(x+1)的最值.
条理清晰有加分.
▼优质解答
答案和解析
1、f(X)=2(x+3/4t)^2+2t-9/8t^2
故g(t)=-9/8t^2+2t
g(t)=-9/8(t-8/9)^2+8/9
故g(t)max=8/9
2、二次函数的一个特点就是只有两个区间,分布在对称轴两侧,一个为增区间,一个为减区间.
当2(k+1)>0即k>-1时,开口向上,故对称轴在直线x=0左边既4/-4(k+1)-1
当2(k+1)
故g(t)=-9/8t^2+2t
g(t)=-9/8(t-8/9)^2+8/9
故g(t)max=8/9
2、二次函数的一个特点就是只有两个区间,分布在对称轴两侧,一个为增区间,一个为减区间.
当2(k+1)>0即k>-1时,开口向上,故对称轴在直线x=0左边既4/-4(k+1)-1
当2(k+1)
看了1.设函数f(x)=2x^2+...的网友还看了以下:
把一个棱长3分米的正方体木块,从上到下挖一个长方体孔洞边长1分米的正方形.体积求出来了是24立方分米 2020-03-31 …
修一条长320千米的高速公路,已经修了4分之3,还剩多少没修?第一种方法:先求:高速公路已经修好了 2020-06-07 …
某消防水池蓄水900m³,某消防演习时每分钟抽水15m³去灭火,抽水时间为t(分),池中剩余水量为 2020-06-08 …
求三角形面积?这是个直角三角形,中间是个正方形,剩余两个直角三角形(剩余两个直角三角形第三条边长分 2020-06-27 …
一根绳子长2米,如果剪去5分之3米,求剩下的米数,列式是();如果剪去它的5分之一根绳子长2米,如 2020-07-07 …
把边长为9厘米的正方形纸片,第一次剪去它的13,第二次剪去剩下的12,第三次再剪去剩下的13,第四 2020-07-07 …
把边长为9厘米的正方形纸片,第一次剪去它的13,第二次剪去剩下的12,第三次再剪去剩下的13,第四 2020-07-07 …
把边长为9厘米的正方形纸片,第一次剪去它的13,第二次剪去剩下的12,第三次再剪去剩下的13,第四 2020-07-07 …
把边长为9厘米的正方形纸片,第一次剪去它的13,第二次剪去剩下的12,第三次再剪去剩下的13,第四 2020-07-07 …
有一长方形条幅,长为am,宽为bm,四周镶上宽度相等的花边,求剩余面积S(m2)与花边宽度x(m)之 2020-12-08 …