早教吧作业答案频道 -->数学-->
1.设函数f(x)=2x^2+3tx+2t的最小值为g(t),求g(t)的解析式,并求出当t为何值时g(t)可取得最大值.2.已知关于x的二次函数f(x)=2(k+1)x^2+4x+3k-2在区间(0,1)上单调递增,求实数k的取值范围.3.在只剩一堵墙的
题目详情
1.设函数f(x)=2x^2+3tx+2t的最小值为g(t),求g(t)的解析式,并求出当t为何值时g(t)可取得最大值.
2.已知关于x的二次函数f(x)=2(k+1)x^2+4x+3k-2在区间(0,1)上单调递增,求实数k的取值范围.
3.在只剩一堵墙的破屋上修建新房,旧墙长12米,新屋的面积预定为112平方米,已知(1)修理旧墙的费用相当于砌新墙的25%;(2)拆旧墙的一部分,利用旧料来砌新墙,这费用相当于砌新墙的50%.问:在这种情况下,应以何种方式来利用旧墙最为合算?
4.函数y=1+1/(x+a)的图像在(-∞,-1)上减函数,则a的范围是
5.银行一年期储蓄的年利率为1.98%,并且每存满一年就将这一年的利息加入本金中,作为下一年的本金,设本金为1万元,这样经过x年后本金利息和为原来的y倍,试写出y关于x的函数关系式,并求出第10年时的本息和(精确到元).
6.若2x+y=1,求4^x+2^y的最小值.
7.若x满足3/(x+1)≥1,求函数y=4^x-2^(x+1)的最值.
条理清晰有加分.
2.已知关于x的二次函数f(x)=2(k+1)x^2+4x+3k-2在区间(0,1)上单调递增,求实数k的取值范围.
3.在只剩一堵墙的破屋上修建新房,旧墙长12米,新屋的面积预定为112平方米,已知(1)修理旧墙的费用相当于砌新墙的25%;(2)拆旧墙的一部分,利用旧料来砌新墙,这费用相当于砌新墙的50%.问:在这种情况下,应以何种方式来利用旧墙最为合算?
4.函数y=1+1/(x+a)的图像在(-∞,-1)上减函数,则a的范围是
5.银行一年期储蓄的年利率为1.98%,并且每存满一年就将这一年的利息加入本金中,作为下一年的本金,设本金为1万元,这样经过x年后本金利息和为原来的y倍,试写出y关于x的函数关系式,并求出第10年时的本息和(精确到元).
6.若2x+y=1,求4^x+2^y的最小值.
7.若x满足3/(x+1)≥1,求函数y=4^x-2^(x+1)的最值.
条理清晰有加分.
▼优质解答
答案和解析
1、f(X)=2(x+3/4t)^2+2t-9/8t^2
故g(t)=-9/8t^2+2t
g(t)=-9/8(t-8/9)^2+8/9
故g(t)max=8/9
2、二次函数的一个特点就是只有两个区间,分布在对称轴两侧,一个为增区间,一个为减区间.
当2(k+1)>0即k>-1时,开口向上,故对称轴在直线x=0左边既4/-4(k+1)-1
当2(k+1)
故g(t)=-9/8t^2+2t
g(t)=-9/8(t-8/9)^2+8/9
故g(t)max=8/9
2、二次函数的一个特点就是只有两个区间,分布在对称轴两侧,一个为增区间,一个为减区间.
当2(k+1)>0即k>-1时,开口向上,故对称轴在直线x=0左边既4/-4(k+1)-1
当2(k+1)
看了1.设函数f(x)=2x^2+...的网友还看了以下:
(1/3)求一道数学题.m是大于零的自然数,则关于数m,-m,m分之1,负m分之1四者的大小关系判 2020-04-27 …
有关于二次函数最大值求二次函数关系式的题目已知二次函数的最大值y=4,且经过(3,1)和(0,-2 2020-04-27 …
数轴上某点关于某点对称,是用大的数减去小的数来求吗?数轴上三点ABC,点C的对称点点A关于点B对称 2020-05-02 …
已知函数y=ax的平方+k的图像经过(1,3分之5)和(-3,-1)1.求函数的关系式,并指出顶点 2020-06-06 …
想问个问题(大二的高数关于用定积分求面积的):求p=3cosa及p=1cosa围成图形的公共部分的 2020-06-11 …
已知a为整数关于X的方程a²X=20的根是质数需满足绝对值ax-7大于a方求a已知a为整数关于X的 2020-07-30 …
导数求切线问题设函数Y=X平方-2X+2的图像为C1,函数Y=-X平方+AX+B的图像是C2,已知 2020-07-31 …
n条折线分割平面的最大数目求计算公式或递推公式,要有证明的. 2020-08-01 …
立体几何难题~四面体ABCD,AD=x,其他各棱长为1.(1)求体积C关于x的函数,并求体积最大值 2020-08-02 …
两个整数的最小公倍数为140,最大公约数为4,且小数不能整除大数,求这两个数. 2020-10-30 …