早教吧作业答案频道 -->其他-->
已知圆C1:(x-a)2+(y+2)2=4与圆C2:(x+b)2+(y+2)2=1相外切,则ab的最大值为()A.62B.32C�已知圆C1:(x-a)2+(y+2)2=4与圆C2:(x+b)2+(y+2)2=1相外切,则ab的最大值为()A.
题目详情
已知圆C1:(x-a)2+(y+2)2=4与圆C2:(x+b)2+(y+2)2=1相外切,则ab的最大值为( )A.62B.32C�
已知圆C1:(x-a)2+(y+2)2=4与圆C2:(x+b)2+(y+2)2=1相外切,则ab的最大值为( )
A.
B.
C.
D.2
已知圆C1:(x-a)2+(y+2)2=4与圆C2:(x+b)2+(y+2)2=1相外切,则ab的最大值为( )
A.
| ||
| 2 |
B.
| 3 |
| 2 |
C.
| 9 |
| 4 |
D.2
| 3 |
▼优质解答
答案和解析
由已知,
圆C1:(x-a)2+(y+2)2=4的圆心为C1(a,-2),半径r1=2.
圆C2:(x+b)2+(y+2)2=1的圆心为C2(-b,-2),半径r2=1.
∵圆C1:(x-a)2+(y+2)2=4与圆C2:(x+b)2+(y+2)2=1相外切,
∴|C1C2|=r1+r2.
即a+b=3.
由基本不等式,得
ab≤(
)2=
.
故选:C.
圆C1:(x-a)2+(y+2)2=4的圆心为C1(a,-2),半径r1=2.
圆C2:(x+b)2+(y+2)2=1的圆心为C2(-b,-2),半径r2=1.
∵圆C1:(x-a)2+(y+2)2=4与圆C2:(x+b)2+(y+2)2=1相外切,
∴|C1C2|=r1+r2.
即a+b=3.
由基本不等式,得
ab≤(
| a+b |
| 2 |
| 9 |
| 4 |
故选:C.
看了 已知圆C1:(x-a)2+(...的网友还看了以下:
(1)x/a+x/b-a+a/a+b(a不等于0,axa不等于bxb)(2)(mx-n)(m+n) 2020-04-07 …
化简a^2(x-b)(x-c)/(a-b)(a-c)+b^2(x-c)(x-a)/(b-c)(b- 2020-05-14 …
1、已知a,b,c互不相等求2a-b-c/(a-b)(b-c)+2b-c-a/(b-c)(b-a) 2020-05-16 …
判定7/332和1949/1992能否表示为1/l+1/m的形式,其中l,m为正整数.若能表示,求 2020-06-12 …
解方程abc都为正数,x-a-b/c+x-b-c/a+x-c-a/bx-a-b/c(+x-b-c) 2020-06-12 …
求证:A∩(B∪C)=(A∪B)∩(A∪C)(1)假设x∈A∩(B∪C),则x∈A且x∈B∪C,所 2020-07-20 …
四.求证:a^2(x-b)(x-c)/(a-b)(a-c)+b^2(x-c)(x-a)/(b-c) 2020-07-29 …
多项式除以多项式的题,帮我!50金币,一定要做对!1.已知等式(x+a)(x+b)+c(x-5)= 2020-08-01 …
式子a/bc+b/ca+c/ab的值能否为0?式子a-b/(b-c)x(c-a)+b-c/(a-b) 2020-10-30 …
因式分解1,(x-a)^3+a(a-x)2,3m(x-5)-5n(5-x)3,y(x-y)^2-(y 2020-10-31 …