早教吧作业答案频道 -->数学-->
几道高等数学题,1题计算y=x^2与x^2=2-y所围成的图形面积2题求微分方程的通解:y'-1/x*y=lnx.3题求函数y=x^4-2x^2+5在区间[-2,2]上的最大值和最小值.4题求大f1(根号下2x+1)/(x+1)*(dx)0
题目详情
几道高等数学题,
1题 计算y=x^2 与 x^2=2-y所围成的图形面积
2题 求微分方程的通解:
y' - 1/x *y =lnx.
3题 求函数y=x^4 - 2x^2+5 在区间 [-2,2]上的最大值和最小值.
4题 求 大f1 (根号下2x+1) / (x+1) *(dx)
0
1题 计算y=x^2 与 x^2=2-y所围成的图形面积
2题 求微分方程的通解:
y' - 1/x *y =lnx.
3题 求函数y=x^4 - 2x^2+5 在区间 [-2,2]上的最大值和最小值.
4题 求 大f1 (根号下2x+1) / (x+1) *(dx)
0
▼优质解答
答案和解析
1、y=x^2 与 x^2=2-y,交于(-1,1) (1,1)
围成的面积是S=∫(-1,1)dx∫(x^2,2-x^2)dy=2∫(-1,1) (1-x^2)dx=2(x-1/3x^3) (-1,1)=8/3
2、y' - 1/x *y =lnx
两边乘以1/x
y'/x-1/x^2*y=(lnx)/x
也就是:(y/x)'=(lnx)/x
两边积分:y/x=∫ (lnx)/xdx=∫ lnx d(lnx)=1/2(lnx)^2+C
y=1/2*x*(lnx)^2+Cx
3、y=x^4-2x^2+5
y'=4x^3-4x=4x(x-1)(x+1)
y'=0时,x=0或x=-1或x=1,那么极值点就是这三点
算出y(0)=5 y(-1)=4 y(1)=4 y(-2)=13 y(2)=13
所以最大值是13 最小值是4
4、∫(0,1) √(2x+1)/(x+1) dx 令√(2x+1)=t x=(t^2-1)/2 dx=tdt
=∫(1,√3) 2t/(t^2+1)*tdt
=∫(1,√3) 2(1-1/(t^2+1))dt
=2 (t-arctant) (1,√3)
=2(√3-1)-π/6
围成的面积是S=∫(-1,1)dx∫(x^2,2-x^2)dy=2∫(-1,1) (1-x^2)dx=2(x-1/3x^3) (-1,1)=8/3
2、y' - 1/x *y =lnx
两边乘以1/x
y'/x-1/x^2*y=(lnx)/x
也就是:(y/x)'=(lnx)/x
两边积分:y/x=∫ (lnx)/xdx=∫ lnx d(lnx)=1/2(lnx)^2+C
y=1/2*x*(lnx)^2+Cx
3、y=x^4-2x^2+5
y'=4x^3-4x=4x(x-1)(x+1)
y'=0时,x=0或x=-1或x=1,那么极值点就是这三点
算出y(0)=5 y(-1)=4 y(1)=4 y(-2)=13 y(2)=13
所以最大值是13 最小值是4
4、∫(0,1) √(2x+1)/(x+1) dx 令√(2x+1)=t x=(t^2-1)/2 dx=tdt
=∫(1,√3) 2t/(t^2+1)*tdt
=∫(1,√3) 2(1-1/(t^2+1))dt
=2 (t-arctant) (1,√3)
=2(√3-1)-π/6
看了 几道高等数学题,1题计算y=...的网友还看了以下:
高数一高分悬赏(适当来点步奏)1.求极限limsin3x/sin5x.2.已知函数y=sine^x 2020-04-07 …
求不等式组展示的平面区域面积在坐标平面上,不等式组x²+y²≤|x|+|y|y≥x求不等式组所表示 2020-04-25 …
已知x>0,y>0且8x+2y-xy=0,求x+y的最小值.为什么我求的是16啊?这是我求的过程: 2020-04-27 …
已知函数f(x)=1/3x^2-ax^2+(a^2-1)x+b(a,b属于R),其图像在点(1,f 2020-05-15 …
1)已知函数f(x)=5sinxcosx-5√3cos²x+5√3/2(x∈R)(1)求f(x)的 2020-06-06 …
急二重积分坐标变换D是由曲线y=x^3,y=4x^3,x=y^3,x=4y^3所围成的第一象限部分 2020-06-12 …
1、求f(x)=-x^2+2x-3在区间[-1,2]上的值域2、已知二次函数f(x)=ax²+2a 2020-07-15 …
已知函数f:[a,b]→R(实数集合),且对于任意x,y∈[a,b],f[(x+y)/2]≤[f( 2020-08-01 …
对数函数难题已知函数y=log4(2x+3-x^2)求1.函数的单调区间2.求y的最大值,并求取最 2020-08-02 …
求函数f(x,y)在区域d={(x,y)|(x-2½)²(y-2½)²≤9}上的最大求函数f(x,y 2020-11-24 …