早教吧作业答案频道 -->数学-->
数学分析中一致连续性问题设函数f在区间[a,+∞)上满足Lipschitz条件,其中a>0.证明:f(x)/x在[a,+∞)上一致连续.
题目详情
数学分析中一致连续性问题
设函数 f 在区间[a,+∞)上满足Lipschitz条件,其中a>0.证明:f(x)/x 在[a,+∞)上一致连续.
设函数 f 在区间[a,+∞)上满足Lipschitz条件,其中a>0.证明:f(x)/x 在[a,+∞)上一致连续.
▼优质解答
答案和解析
证明:
先具体说一下Lipschitz条件(我没学过,才从网上查到的,
利普希茨连续条件(Lipschitz continuity)的定义:若存在常数K(非负),使得对定义域D的任意两个不同的实数x1、x2均有:∣f(x1)-f(x2)∣≤K∣x1-x2∣成立,则称f(x)在D上满足利普希茨条件.
下面证明原命题.
分两步.
第一步,首先证明函数f(x)/x在任何闭区间[a,b]上一致连续.
为此我们又先证明函数f(x)在任何闭区间[a,b]上一致连续.
对任给的ε>0,我们说当x1,x2∈[a,b],且∣x1-x2∣<ε/K时,必有
∣f(x1)-f(x2)∣≤K∣x1-x2∣<ε
这便证明了函数f(x)在闭区间[a,b]上一致连续,当然函数f(x)在闭区间[a,b]上连续.
从而它和闭区间[a,b]上的连续函数y=1/x的积f(x)/x也在闭区间[a,b]上连续,
所以函数f(x)/x在闭区间[a,b]上一致连续.
第二步,我们证明若区间[c,+∞)中的c足够大时,函数f(x)/x在区间[c,+∞)上一致连续.
因为对于x∈[a,+∞),有
∣f(x)∣-∣f(a)∣≤∣f(x)-f(a)∣≤K∣x-a∣
从而有
∣f(x)∣≤∣f(a)∣+K∣x-a∣
设x1,x2∈[c,+∞)
现在我们先把∣x1-x2∣取得小于1,即∣x1-x2∣<1;把c取得大于1,即c>1,又设ε为任一正数,
则我们有,当c>max{1,3∣f(a)∣/ε}=η1时,
∣x1-x2∣∣f(a)∣/x1x2
<∣f(a)∣/x1x2<∣f(a)∣/x1≤∣f(a)∣/c<ε/3 ①
当c>max{1,3K/ε}=η2时,有
K∣x2-x1∣∣x1-a∣/x1x2
<K∣x1-a∣/x1x2
<K/x2≤K/c<ε/3 ②
还有
∣f(x1)-f(x2)∣/x2≤K∣x1-x2∣/x2<K/x2≤K/c<ε/3 ③
令η=max{η1,η2},并取c>η
则对任给的ε>0,当∣x1-x2∣<1时,
∣f(x1)/x1 -f(x2)/x2∣
=∣[x2f(x1)-x1f(x2)]/x1x2∣
=∣[x2f(x1)-x1f(x1)]+[x1f(x1)-x1f(x2)]∣/x1x2
≤(∣x2f(x1)-x1f(x1)∣+∣x1f(x1)-x1f(x2)∣)/x1x2
=∣x2-x1∣∣f(x1)∣/x1x2 +x1∣f(x1)-f(x2)∣/x1x2
=∣x2-x1∣∣f(x1)∣/x1x2 +∣f(x1)-f(x2)∣/x2
≤∣x2-x1∣(∣f(a)∣+K∣x1-a∣)/x1x2 +∣f(x1)-f(x2)∣/x2
=∣x1-x2∣∣f(a)∣/x1x2
+K∣x2-x1∣∣x1-a∣/x1x2
+∣f(x1)-f(x2)∣/x2
<ε/3 +ε/3 +ε/3=ε
这便证明了函数f(x)/x在区间[c,+∞)上一致连续.
最后,我们取b=c+2,便有函数f(x)/x在闭区间[a,c+2]上一致连续,我们设对上面所任给的ε>0,存在θ>0,使当x1,x2∈[a,c+2],且∣x1-x2∣<θ时,
∣f(x1)/x1 -f(x2)/x2∣<ε
现取ξ=min{1,θ},则有对任给的ε>0,当∣x1-x2∣<ξ时,
函数f(x)/x在闭区间[a,c+2]上一致连续,也在区间[c,+∞)上一致连续.
并且当∣x1-x2∣<ξ<1时,
必有x1,x2或同属于闭区间[a,c+2],或同属于区间[c,+∞).
这是因为若设x1<x2
当x2∈[a,c+2],当然有x1∈[a,c+2];
当x2不属于[a,c+2]时,必有x2>c+2,此时x1>x2- 1>c+2-1=c+1
这便说明x1,x2同是属于[c,+∞).
这样,我们便证明了函数f(x)/x在在[a,+∞)上一致连续.
证完.
先具体说一下Lipschitz条件(我没学过,才从网上查到的,
利普希茨连续条件(Lipschitz continuity)的定义:若存在常数K(非负),使得对定义域D的任意两个不同的实数x1、x2均有:∣f(x1)-f(x2)∣≤K∣x1-x2∣成立,则称f(x)在D上满足利普希茨条件.
下面证明原命题.
分两步.
第一步,首先证明函数f(x)/x在任何闭区间[a,b]上一致连续.
为此我们又先证明函数f(x)在任何闭区间[a,b]上一致连续.
对任给的ε>0,我们说当x1,x2∈[a,b],且∣x1-x2∣<ε/K时,必有
∣f(x1)-f(x2)∣≤K∣x1-x2∣<ε
这便证明了函数f(x)在闭区间[a,b]上一致连续,当然函数f(x)在闭区间[a,b]上连续.
从而它和闭区间[a,b]上的连续函数y=1/x的积f(x)/x也在闭区间[a,b]上连续,
所以函数f(x)/x在闭区间[a,b]上一致连续.
第二步,我们证明若区间[c,+∞)中的c足够大时,函数f(x)/x在区间[c,+∞)上一致连续.
因为对于x∈[a,+∞),有
∣f(x)∣-∣f(a)∣≤∣f(x)-f(a)∣≤K∣x-a∣
从而有
∣f(x)∣≤∣f(a)∣+K∣x-a∣
设x1,x2∈[c,+∞)
现在我们先把∣x1-x2∣取得小于1,即∣x1-x2∣<1;把c取得大于1,即c>1,又设ε为任一正数,
则我们有,当c>max{1,3∣f(a)∣/ε}=η1时,
∣x1-x2∣∣f(a)∣/x1x2
<∣f(a)∣/x1x2<∣f(a)∣/x1≤∣f(a)∣/c<ε/3 ①
当c>max{1,3K/ε}=η2时,有
K∣x2-x1∣∣x1-a∣/x1x2
<K∣x1-a∣/x1x2
<K/x2≤K/c<ε/3 ②
还有
∣f(x1)-f(x2)∣/x2≤K∣x1-x2∣/x2<K/x2≤K/c<ε/3 ③
令η=max{η1,η2},并取c>η
则对任给的ε>0,当∣x1-x2∣<1时,
∣f(x1)/x1 -f(x2)/x2∣
=∣[x2f(x1)-x1f(x2)]/x1x2∣
=∣[x2f(x1)-x1f(x1)]+[x1f(x1)-x1f(x2)]∣/x1x2
≤(∣x2f(x1)-x1f(x1)∣+∣x1f(x1)-x1f(x2)∣)/x1x2
=∣x2-x1∣∣f(x1)∣/x1x2 +x1∣f(x1)-f(x2)∣/x1x2
=∣x2-x1∣∣f(x1)∣/x1x2 +∣f(x1)-f(x2)∣/x2
≤∣x2-x1∣(∣f(a)∣+K∣x1-a∣)/x1x2 +∣f(x1)-f(x2)∣/x2
=∣x1-x2∣∣f(a)∣/x1x2
+K∣x2-x1∣∣x1-a∣/x1x2
+∣f(x1)-f(x2)∣/x2
<ε/3 +ε/3 +ε/3=ε
这便证明了函数f(x)/x在区间[c,+∞)上一致连续.
最后,我们取b=c+2,便有函数f(x)/x在闭区间[a,c+2]上一致连续,我们设对上面所任给的ε>0,存在θ>0,使当x1,x2∈[a,c+2],且∣x1-x2∣<θ时,
∣f(x1)/x1 -f(x2)/x2∣<ε
现取ξ=min{1,θ},则有对任给的ε>0,当∣x1-x2∣<ξ时,
函数f(x)/x在闭区间[a,c+2]上一致连续,也在区间[c,+∞)上一致连续.
并且当∣x1-x2∣<ξ<1时,
必有x1,x2或同属于闭区间[a,c+2],或同属于区间[c,+∞).
这是因为若设x1<x2
当x2∈[a,c+2],当然有x1∈[a,c+2];
当x2不属于[a,c+2]时,必有x2>c+2,此时x1>x2- 1>c+2-1=c+1
这便说明x1,x2同是属于[c,+∞).
这样,我们便证明了函数f(x)/x在在[a,+∞)上一致连续.
证完.
看了数学分析中一致连续性问题设函数...的网友还看了以下:
随着生命科学技术的不断发展,物种形成、生物多样性发展机制的理论探索也在不断的发展与完善.如图是科学 2020-05-17 …
计算题:要度量某软件的质量要素F6(可维护性),假设C63=0.1,C66=0.2,C610=0.2 2020-05-31 …
随着生命科学技术的不断发展,物种形成生物多样性发展机制的理论探索也在不断的发展与完善.如图是科学家利 2020-11-02 …
随着生命科学技术的不断发展,物种形成、生物多样性发展机制的理论探索也在不断的发展与完善.如图是科学家 2020-11-02 …
如图是验证酵母菌细胞呼吸类型的实验装置,两套装置的培养条件一致(不考虑环境中物理因素的影响),下列相 2020-11-06 …
奇数效用与序数效用区别在哪奇数效用与序数效用均衡条件一致,就序数效用的无差异曲线所表现的U函数,在X 2020-11-17 …
探究“光对鼠妇生活的影响”时:(1)提出的问题是?作出的假设是.(2)该实验中的变量是,在设计实验时 2020-12-07 …
一个东西同时申请是发明和是实用新型,其保护范围是否可以不同权力要求书是否可以内容不同?比如说构件一致 2020-12-21 …
载重推车问题:将推车前轮尺寸减小后,所用的推力是否有相应的减少.具体见问题补充.1、推车载重量远大于 2020-12-28 …
幂级数Σx^n/(1+x)为什么在(0,1)不一致收敛通过M判别准则它的每一项绝对值小于x^n而Σx 2021-02-09 …