早教吧作业答案频道 -->数学-->
(2013•南平)如图,已知点A(0,4),B(2,0).(1)求直线AB的函数解析式;(2)已知点M是线段AB上一动点(不与点A、B重合),以M为顶点的抛物线y=(x-m)2+n与线段OA交于点C.①求线段
题目详情

(1)求直线AB的函数解析式;
(2)已知点M是线段AB上一动点(不与点A、B重合),以M为顶点的抛物线y=(x-m)2+n与线段OA交于点C.
①求线段AC的长;(用含m的式子表示)
②是否存在某一时刻,使得△ACM与△AMO相似?若存在,求出此时m的值.
▼优质解答
答案和解析
(1)设直线AB的函数解析式为:y=kx+b.
∵点A坐标为(0,4),点B坐标为(2,0),
∴
,解得:
,
即直线AB的函数解析式为y=-2x+4;
(2)①∵以M为顶点的抛物线为y=(x-m)2+n,
∴抛物线顶点M的坐标为(m,n).
∵点M在线段AB上,∴n=-2m+4,
∴y=(x-m)2-2m+4.
把x=0代入y=(x-m)2-2m+4,
得y=m2-2m+4,即C点坐标为(0,m2-2m+4),
∴AC=OA-OC=4-(m2-2m+4)=-m2+2m;
②存在某一时刻,能够使得△ACM与△AMO相似.理由如下:
过点M作MD⊥y轴于点D,则D点坐标为(0,-2m+4),
∴AD=OA-OD=4-(-2m+4)=2m.
∵M不与点A、B重合,∴0<m<2,
又∵MD=m,∴AM=
=
m.
∵在△ACM与△AMO中,∠CAM=∠MAO,∠MCA>∠AOM,
∴当△ACM与△AMO相似时,假设△ACM∽△AMO,
∴
=
,即

∵点A坐标为(0,4),点B坐标为(2,0),
∴
|
|
即直线AB的函数解析式为y=-2x+4;
(2)①∵以M为顶点的抛物线为y=(x-m)2+n,
∴抛物线顶点M的坐标为(m,n).
∵点M在线段AB上,∴n=-2m+4,
∴y=(x-m)2-2m+4.
把x=0代入y=(x-m)2-2m+4,
得y=m2-2m+4,即C点坐标为(0,m2-2m+4),
∴AC=OA-OC=4-(m2-2m+4)=-m2+2m;
②存在某一时刻,能够使得△ACM与△AMO相似.理由如下:
过点M作MD⊥y轴于点D,则D点坐标为(0,-2m+4),
∴AD=OA-OD=4-(-2m+4)=2m.
∵M不与点A、B重合,∴0<m<2,
又∵MD=m,∴AM=
AD2+MD2 |
5 |
∵在△ACM与△AMO中,∠CAM=∠MAO,∠MCA>∠AOM,
∴当△ACM与△AMO相似时,假设△ACM∽△AMO,
∴
AC |
AM |
AM |
AO |
−m2+2m | |||||||||||||||
|
看了(2013•南平)如图,已知点...的网友还看了以下:
若向量n与直线l垂直,则称向量n为直线l的法向量.直线x+2y+3=0的一个法向量为()A.(1, 2020-06-03 …
用数学归纳法证明:“两两相交且不共点的n条直线把平面分为f(n)部分,则f(n)=1+n(n+1) 2020-06-11 …
平面上有n条直线,每两条直线都相交,且没有3条直线相交于一点,处于这种位置的n条直线分一个平面所成 2020-06-15 …
如何推出直线数与最多交点的关系直线数与最多交点的关系是N*(N-1)/2,N为直线条数是如何得出来 2020-07-25 …
初二勾股定理题若数组3、4、5;5、12、13;7、24、25;9、40、41;.;每一数组都是某 2020-07-26 …
1、已知f(n)=f(n-1)+a^n(n属于自然数,且n大于等于2),f(1)=1,则f(n)= 2020-08-02 …
一道关于勾股定理找规律的题.数组3、4、5;5、12、13;7、24、25;9、40、41;……都 2020-08-02 …
向量的垂直题:设直线n和直线m的斜率为k和p,则直线n有方向向量a=(1,k).直线m有方向向量b 2020-08-02 …
同一平面内的n条直线两两相交,最多有28个交点,则n的值为? 2020-11-24 …
已知抛物线E:y2=2px(P>0)的准线为x=-1,M,N为直线x=-2上的两点,M,N两点的纵坐 2020-12-05 …