早教吧作业答案频道 -->数学-->
(2012•江门一模)已知函数f(x)=lnx-ax+1,a∈R是常数.(1)求函数y=f(x)的图象在点P(1,f(1))处的切线l的方程,并证明函数y=f(x)(x≠1)的图象在直线l的下方;(2)讨论函数y=f
题目详情
(2012•江门一模)已知函数f(x)=lnx-ax+1,a∈R是常数.
(1)求函数y=f(x)的图象在点P(1,f(1))处的切线l的方程,并证明函数y=f(x)(x≠1)的图象在直线l的下方;
(2)讨论函数y=f(x)零点的个数.
(1)求函数y=f(x)的图象在点P(1,f(1))处的切线l的方程,并证明函数y=f(x)(x≠1)的图象在直线l的下方;
(2)讨论函数y=f(x)零点的个数.
▼优质解答
答案和解析
(1)f(1)=-a+1,
k1=f′(1)=1-a,所以切线l的方程为
y-f(1)=k1×(x-1),即y=(1-a)x
作F(x)=f(x)-(1-a)x=lnx-x+1,x>0,则
F′(x)=
-1=
(1-x),解F′(x)=0得x=1.
所以任意x>0且x≠1,F(x)<0,f(x)<(1-a)x,
即函数y=f(x)(x≠1)的图象在直线l的下方.
(2)令y=0,即lnx=ax-1,画图可知
当a≤0时,直线y=ax-1与y=lnx的图象有且只有一个交点,即一个零点;
当a>0时,设直线y=ax-1与y=lnx切于点(x0,lnx0),切线斜率为k=
∴切线方程为y-lnx0=
(x-x0),把(0,-1)代入上式可得x0=1,k=1
∴当0<a<1时,直线y=ax-1与y=lnx有两个交点,即两个零点;
当a=1时直线y=ax-1与y=lnx相切于一点,即一个零点;
当a>1时直线y=ax-1与y=lnx没有交点,即无零点.
综上可知,当a>1时,f(x)无零点;当a=1或a≤0时,f(x)有且仅有一个零点;
当0<a<1时,f(x)有两个零点.
k1=f′(1)=1-a,所以切线l的方程为
y-f(1)=k1×(x-1),即y=(1-a)x
作F(x)=f(x)-(1-a)x=lnx-x+1,x>0,则
| x | (0,1) | 1 | (1,+∞) |
| F′(x) | + | 0 | - |
| F(x) | ↗ | 最大值 | ↘ |
| 1 |
| x |
| 1 |
| x |
所以任意x>0且x≠1,F(x)<0,f(x)<(1-a)x,

即函数y=f(x)(x≠1)的图象在直线l的下方.
(2)令y=0,即lnx=ax-1,画图可知
当a≤0时,直线y=ax-1与y=lnx的图象有且只有一个交点,即一个零点;
当a>0时,设直线y=ax-1与y=lnx切于点(x0,lnx0),切线斜率为k=
| 1 |
| x0 |
∴切线方程为y-lnx0=
| 1 |
| x0 |
∴当0<a<1时,直线y=ax-1与y=lnx有两个交点,即两个零点;
当a=1时直线y=ax-1与y=lnx相切于一点,即一个零点;
当a>1时直线y=ax-1与y=lnx没有交点,即无零点.
综上可知,当a>1时,f(x)无零点;当a=1或a≤0时,f(x)有且仅有一个零点;
当0<a<1时,f(x)有两个零点.
看了(2012•江门一模)已知函数...的网友还看了以下:
点P是直线y=0.5x+2与双曲线y=k/x在第一象限内的一个交点,直线y=0.5x+2与x轴y轴 2020-05-12 …
设随机变量X~B(2,p),Y~B(4,p),若P(X≥1)=,则P(Y≥2)的值为[]A.B.C 2020-05-15 …
如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,s两点,点P(0,k)是 2020-05-16 …
如图,B(6,0)E(0,6),直线Y=3X+3与X轴,Y轴分别交于A,C,点P为直线BE上一点, 2020-05-16 …
点P是直线y=1/2x+2与双曲线y=k/x在第一象限内的一个交点,直线y=1/2x+2与x轴、y 2020-05-21 …
在直角坐标系XOY内,点P在直线Y=二分之一X上(点P在第一象限)过点P作PA垂直X轴,垂足为A, 2020-07-26 …
如图所示,点P是直线y=x+2与双曲线y=x分之k在第一象限内的一个交点如图,点P是直线y=+2与 2020-08-01 …
已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离d可用公式计算.例如:求点 2020-08-02 …
对于平面直角坐标系中的任意点P(x,y),点P到x,y轴的距离分别为d1,d2我们把d1+d2称为点 2020-10-31 …
已知点P(x0,y0)和直线kx-y+b=0(由y=kx+b变形而得),则点P到直线kx-y+b=0 2020-11-03 …