早教吧作业答案频道 -->数学-->
(2012•江门一模)已知函数f(x)=lnx-ax+1,a∈R是常数.(1)求函数y=f(x)的图象在点P(1,f(1))处的切线l的方程,并证明函数y=f(x)(x≠1)的图象在直线l的下方;(2)讨论函数y=f
题目详情
(2012•江门一模)已知函数f(x)=lnx-ax+1,a∈R是常数.
(1)求函数y=f(x)的图象在点P(1,f(1))处的切线l的方程,并证明函数y=f(x)(x≠1)的图象在直线l的下方;
(2)讨论函数y=f(x)零点的个数.
(1)求函数y=f(x)的图象在点P(1,f(1))处的切线l的方程,并证明函数y=f(x)(x≠1)的图象在直线l的下方;
(2)讨论函数y=f(x)零点的个数.
▼优质解答
答案和解析
(1)f(1)=-a+1,
k1=f′(1)=1-a,所以切线l的方程为
y-f(1)=k1×(x-1),即y=(1-a)x
作F(x)=f(x)-(1-a)x=lnx-x+1,x>0,则
F′(x)=
-1=
(1-x),解F′(x)=0得x=1.
所以任意x>0且x≠1,F(x)<0,f(x)<(1-a)x,
即函数y=f(x)(x≠1)的图象在直线l的下方.
(2)令y=0,即lnx=ax-1,画图可知
当a≤0时,直线y=ax-1与y=lnx的图象有且只有一个交点,即一个零点;
当a>0时,设直线y=ax-1与y=lnx切于点(x0,lnx0),切线斜率为k=
∴切线方程为y-lnx0=
(x-x0),把(0,-1)代入上式可得x0=1,k=1
∴当0<a<1时,直线y=ax-1与y=lnx有两个交点,即两个零点;
当a=1时直线y=ax-1与y=lnx相切于一点,即一个零点;
当a>1时直线y=ax-1与y=lnx没有交点,即无零点.
综上可知,当a>1时,f(x)无零点;当a=1或a≤0时,f(x)有且仅有一个零点;
当0<a<1时,f(x)有两个零点.
k1=f′(1)=1-a,所以切线l的方程为
y-f(1)=k1×(x-1),即y=(1-a)x
作F(x)=f(x)-(1-a)x=lnx-x+1,x>0,则
x | (0,1) | 1 | (1,+∞) |
F′(x) | + | 0 | - |
F(x) | ↗ | 最大值 | ↘ |
1 |
x |
1 |
x |
所以任意x>0且x≠1,F(x)<0,f(x)<(1-a)x,

即函数y=f(x)(x≠1)的图象在直线l的下方.
(2)令y=0,即lnx=ax-1,画图可知
当a≤0时,直线y=ax-1与y=lnx的图象有且只有一个交点,即一个零点;
当a>0时,设直线y=ax-1与y=lnx切于点(x0,lnx0),切线斜率为k=
1 |
x0 |
∴切线方程为y-lnx0=
1 |
x0 |
∴当0<a<1时,直线y=ax-1与y=lnx有两个交点,即两个零点;
当a=1时直线y=ax-1与y=lnx相切于一点,即一个零点;
当a>1时直线y=ax-1与y=lnx没有交点,即无零点.
综上可知,当a>1时,f(x)无零点;当a=1或a≤0时,f(x)有且仅有一个零点;
当0<a<1时,f(x)有两个零点.
看了(2012•江门一模)已知函数...的网友还看了以下:
基本初等函数,在线等已知x∈[-3,2],求f(x)=(1/4X)-(1/2X)+1的最小和最大值 2020-04-27 …
已知定义域为R的函数f(x)满足f(f(x)-x^z+x)=f(x)-x^2+x,1,若f(2)= 2020-06-07 …
已知定义域为R的函数f(x)满足f(f(x)-x^2+x)=f(x)-x^2+x(1)若f(2)= 2020-06-25 …
f(a)=∫[pi/20]|cos(x+a)|dx求f(a)+f(a+pi/2)的值以及f(a)的 2020-08-02 …
设函数f(x)=sinx/tanx(1)求函数f(x)的定义域(2)已知a属于(0,π/2),且f( 2020-12-31 …
第一题[1]f(x)=4x+7分之1[2]f(x)=√1-x+√x+3-1(√是根号)根号X+3减1 2020-12-31 …
求几道函数题答案一,求定域值f(x)=1/4x+7f(x)=(根号下1-x)+(根号下x+3)-1二 2020-12-31 …
已知函数f(x)=x平方+4ax+2a=61)若f(x)的值域为[0,正无穷)求a的值2)若函数f( 2021-01-12 …
求函数定义域呵呵!以前的都忘了!一、y=f(x-1)+f(x+1),f(u)的定义域为(0,3)二、 2021-01-31 …
已知函数f(x)=(根号下x+3)+1/x+2,1.求函数的定义域2.求f(-3),f(2/已知函数 2021-01-31 …