早教吧作业答案频道 -->数学-->
数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:
题目详情
数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.

经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.

经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
▼优质解答
答案和解析
(1)正确.
证明:在AB上取一点M,使AM=EC,连接ME.
∴BM=BE,
∴∠BME=45°,
∴∠AME=135°,
∵CF是外角平分线,
∴∠DCF=45°,
∴∠ECF=135°,
∴∠AME=∠ECF,
∵∠AEB+∠BAE=90°,∠AEB+∠CEF=90°,
∴∠BAE=∠CEF,
∴△AME≌△ECF(ASA),
∴AE=EF.
(2)正确.
证明:在BA的延长线上取一点N.
使AN=CE,连接NE.
∴BN=BE,
∴∠N=∠NEC=45°,
∵CF平分∠DCG,
∴∠FCE=45°,
∴∠N=∠ECF,
∵四边形ABCD是正方形,
∴AD∥BE,
∴∠DAE=∠BEA,
即∠DAE+90°=∠BEA+90°,
∴∠NAE=∠CEF,
∴△ANE≌△ECF(ASA),
∴AE=EF.

证明:在AB上取一点M,使AM=EC,连接ME.
∴BM=BE,
∴∠BME=45°,
∴∠AME=135°,
∵CF是外角平分线,
∴∠DCF=45°,
∴∠ECF=135°,
∴∠AME=∠ECF,
∵∠AEB+∠BAE=90°,∠AEB+∠CEF=90°,
∴∠BAE=∠CEF,
∴△AME≌△ECF(ASA),
∴AE=EF.
(2)正确.
证明:在BA的延长线上取一点N.
使AN=CE,连接NE.

∴BN=BE,
∴∠N=∠NEC=45°,
∵CF平分∠DCG,
∴∠FCE=45°,
∴∠N=∠ECF,
∵四边形ABCD是正方形,
∴AD∥BE,
∴∠DAE=∠BEA,
即∠DAE+90°=∠BEA+90°,
∴∠NAE=∠CEF,
∴△ANE≌△ECF(ASA),
∴AE=EF.
看了数学课上,张老师出示了问题:如...的网友还看了以下:
在三角形ABC中,角BAC=90度,AB=AC,AE是过点A的一条直线,BD垂直AE于D,CF垂直 2020-04-07 …
如图所示是某城市部分街道,AF∥BC,EC⊥BC,EF=CF,BA∥DE,BD∥AE,甲,乙两人同 2020-05-21 …
已知任意平行四边形ABCD中,角BAD和角BCD的角平分线是AE和CF,其中点E,F分别是AE和C 2020-06-06 …
如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,过点O作EF∥AB交BC于F,交AC于E 2020-06-15 …
在三角形abc中 角c大于角b 如图1 AD垂直BC于点D AE平分角BAC(1)如图1试用含∠B 2020-06-27 …
E∧//!/D/!FA//\//\B//\!C如图是某城市部分街道示意图,AF‖BC,EC⊥BC, 2020-06-27 …
数据库模式分解请给出答案及其分析过程!给定关系模式R(U,F),其中,属性集U={A,B,C,D, 2020-07-10 …
如图①,AD平分∠BAC,AE⊥BC,∠B=40°,∠C=70°.(1)求∠DAE的度数;(2)如 2020-07-17 …
如图,已知BD,BE分别是∠ABC与它的邻补角∠ABP的平分线,AE⊥BE于E,AD⊥BD于D,且G 2020-11-02 …
初二数学证明难题1.如图,BD,BE分别是∠ABC与它的邻补∠ABP的角平分线,AE⊥BE,AD⊥B 2020-11-04 …