早教吧作业答案频道 -->其他-->
(2013•溧水县一模)如图,菱形ABCD中,对角线AC、BD交于点O,点P在对角线BD上运动(B、D两点除外),线段PA绕点P顺时针旋转m°(0<m<180),得线段PQ.(1)若点Q与点D重合,请在图中用尺
题目详情
(2013•溧水县一模)如图,菱形ABCD中,对角线AC、BD交于点O,点P在对角线BD上运动(B、D两点除外),线段PA绕点P顺时针旋转m°(0<m<180),得线段PQ.
(1)若点Q与点D重合,请在图中用尺规作出点P所处的位置(不写作法,保留作图痕迹);
(2)若点Q落在边CD上,且∠ADB=n°.
①探究m与n之间的数量关系;
②若点P在线段OB上运动,PQ=QD,求n的取值范围.(在备用图中探究)

(1)若点Q与点D重合,请在图中用尺规作出点P所处的位置(不写作法,保留作图痕迹);
(2)若点Q落在边CD上,且∠ADB=n°.
①探究m与n之间的数量关系;
②若点P在线段OB上运动,PQ=QD,求n的取值范围.(在备用图中探究)

▼优质解答
答案和解析
(1)如图1所示:作AD的垂直平分线,交BC于点P.
(2)①如图2,连接PC.
由PC=PQ,得∠3=∠4.
由菱形ABCD,得∠3=∠PAD.
所以得∠4=∠PAD,
而∠4+∠PQD=180°.
所以∠PAD+∠PQD=180°.
所以m+2n=180.
②解法一:∵PQ=QD,
∴∠PAD=∠PCQ=∠PQC=2∠CDB=2n°.
而点P在线段BO上运动,
∴∠BCD>∠3>∠ACD,
∴180-2n>2n>90-n,
∴30<n<45.
解法二:由PQ=QD,可得∠QPD=∠1,
又∵∠1=∠2,
∴∠QPD=∠2,
∵点P在线段OB上运动,
∴∠ABC<∠APQ且∠APQ<90°+∠2(或∠ABC<∠APQ<90°+∠2)
即(2n≤180-2n<90+n)
∴30<n<45.

(2)①如图2,连接PC.
由PC=PQ,得∠3=∠4.
由菱形ABCD,得∠3=∠PAD.
所以得∠4=∠PAD,
而∠4+∠PQD=180°.
所以∠PAD+∠PQD=180°.
所以m+2n=180.
②解法一:∵PQ=QD,
∴∠PAD=∠PCQ=∠PQC=2∠CDB=2n°.

而点P在线段BO上运动,
∴∠BCD>∠3>∠ACD,
∴180-2n>2n>90-n,
∴30<n<45.
解法二:由PQ=QD,可得∠QPD=∠1,
又∵∠1=∠2,
∴∠QPD=∠2,
∵点P在线段OB上运动,
∴∠ABC<∠APQ且∠APQ<90°+∠2(或∠ABC<∠APQ<90°+∠2)
即(2n≤180-2n<90+n)
∴30<n<45.
看了(2013•溧水县一模)如图,...的网友还看了以下:
若函数F(x)=f(x)*g(x)是偶函数,g(x)的图象关于原点对称,且f(x)的图象关于原点对 2020-05-16 …
关于数零,下列几种说法错误的是 A ,0不是正数也不是负数 B,0的相反数是0 C,0的绝对值是0 2020-05-16 …
若a≠0,则方程x^2+y^2+ax-ay=0所表示的图形( )A关于X轴对称 B关于Y轴对称 C 2020-05-17 …
9.设一个锐角与这个角的补角的差的绝对值为,则()(A)0°<a<90°(B)0°<a≤909.设 2020-05-20 …
已知内接于圆的四边形的对角线互相垂直,求证圆心到一边的距离等于这条边所对边长的一半以四边形ABCD 2020-06-06 …
设D是有界闭区域,下列命题中错误的是()A.若f(x,y)在D连续,对D的任何子区域D0均有∬D0 2020-06-12 …
一.(16)一位篮球运动员投篮两次.两投全中的概率为0.375,两头一中的概率为0.5,则他两投全 2020-06-14 …
已知函数f(x)的定义域D=(-∞,0)∪(0,+∞),且对于任意x1,x2∈D已知函数f(x)的 2020-06-25 …
(2014•江西二模)已知等差数列{an}的首项为a1,公差为d,其前n项和为Sn,若直线y=12 2020-07-10 …
某场地长L的值L°=110m,宽D的值为D°=80m,已知|L-L°|≤0.2m,|D-D°|≤0 2020-07-18 …