早教吧作业答案频道 -->数学-->
如图,平行四边形ABCD中,AD=9cm,CD=32cm,∠B=45°,点M、N分别以A、C为起点,1cm/秒的速度沿AD、CB边运动,设点M、N运动的时间为t秒(0≤t≤6)(1)求BC边上高AE的长度;(2)连接AN、CM,当t
题目详情
如图,平行四边形ABCD中,AD=9cm,CD=3
cm,∠B=45°,点M、N分别以A、C为起点,1cm/秒的速度沿AD、CB边运动,设点M、N运动的时间为t秒(0≤t≤6)

(1)求BC边上高AE的长度;
(2)连接AN、CM,当t为何值时,四边形AMCN为菱形;
(3)作MP⊥BC于P,NQ⊥AD于Q,当t为何值时,四边形MPNQ为正方形.
2 |

(1)求BC边上高AE的长度;
(2)连接AN、CM,当t为何值时,四边形AMCN为菱形;
(3)作MP⊥BC于P,NQ⊥AD于Q,当t为何值时,四边形MPNQ为正方形.
▼优质解答
答案和解析
(1)∵四边形ABCD是平行四边形,
∴AB=CD=3
cm.
在直角△ABE中,∵∠AEB=90°,∠B=45°,
∴AE=AB•sin∠B=3
×
=3(cm);
(2)∵点M、N分别以A、C为起点,1cm/秒的速度沿AD、CB边运动,设点M、N运动的时间为t秒(0≤t≤6),
∴AM=CN=t,
∵AM∥CN,
∴四边形AMCN为平行四边形,
∴当AN=AM时,四边形AMCN为菱形.
∵BE=AE=3,EN=6-t,
∴AN2=32+(6-t)2,
∴32+(6-t)2=t2,
解得t=
.
故当t为
时,四边形AMCN为菱形;
(3)∵MP⊥BC于P,NQ⊥AD于Q,QM∥NP,
∴四边形MPNQ为矩形,
∴当QM=QN时,四边形MPNQ为正方形.
∵AM=CN=t,BE=3,
∴AQ=EN=BC-BE-CN=9-3-t=6-t,
∴QM=AM-AQ=t-(6-t)=2t-6,
∵QN=AE=3,
∴2t-6=3,
解得t=4.5.
故当t为4.5时,四边形MPNQ为正方形.
∴AB=CD=3
2 |
在直角△ABE中,∵∠AEB=90°,∠B=45°,
∴AE=AB•sin∠B=3
2 |
| ||
2 |
(2)∵点M、N分别以A、C为起点,1cm/秒的速度沿AD、CB边运动,设点M、N运动的时间为t秒(0≤t≤6),
∴AM=CN=t,
∵AM∥CN,
∴四边形AMCN为平行四边形,
∴当AN=AM时,四边形AMCN为菱形.
∵BE=AE=3,EN=6-t,
∴AN2=32+(6-t)2,
∴32+(6-t)2=t2,
解得t=
15 |
4 |

15 |
4 |
(3)∵MP⊥BC于P,NQ⊥AD于Q,QM∥NP,
∴四边形MPNQ为矩形,
∴当QM=QN时,四边形MPNQ为正方形.
∵AM=CN=t,BE=3,
∴AQ=EN=BC-BE-CN=9-3-t=6-t,
∴QM=AM-AQ=t-(6-t)=2t-6,
∵QN=AE=3,
∴2t-6=3,
解得t=4.5.
故当t为4.5时,四边形MPNQ为正方形.
看了如图,平行四边形ABCD中,A...的网友还看了以下:
三角形abc是边长3厘米的等边三角形,动点P,Q同时从三角形ABC是边长为3厘米的等边三角形,动点 2020-05-24 …
正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编 2020-06-03 …
如图,已知在△ABC中,AB=15,AC=20,cotA=2,P是边AB上的一个动点,⊙P的半径为 2020-06-13 …
已知:如图,在△ABC中,∠A=90°,AB=6,AC=8,点P从点A开始沿AC边向点C匀速移动, 2020-07-17 …
如图,点M、N分别是边长为4分米的正方形ABCD的一组对边AD、BC的中点,P、Q两个动点同时从M 2020-07-20 …
等边三角形ABC的边长为6,点E在AC边上从点A向点C运动,同时点F在BC边上从点C向点B运动,速 2020-07-20 …
如图,△ABC是边长6cm的等边三角形,动点P、Q同时从A、B两点出发,分别在AB、BC边上均速移 2020-08-03 …
如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E 2020-11-04 …
动点.在等边三角形ABC的边长为4cm,常为1cm的线段MN已知:在等边三角形ABC的边长为4cm, 2020-12-15 …
等边三角形上从两个已知一个等边三角形边长为3,两个动点同时从两个顶点出发,以速度为1作匀速运动,动点 2020-12-25 …