早教吧作业答案频道 -->数学-->
已知边长为4的正方形ABCD,点E、F分别在CA、AC的延长线上,且∠BED=∠BFD=45°,那么四边形EBFD的面积是.
题目详情
已知边长为4的正方形ABCD,点E、F分别在CA、AC的延长线上,且∠BED=∠BFD=45°,那么四边形EBFD的面积是___.


▼优质解答
答案和解析
如图连接BD交AC于O.

∵四边形ABCD是正方形,
∴AB=BC=CD=AD=4,∠CAD=∠CAB=45°,
∴∠EAD=∠EAB=135°,
在△EAB和△EAD中,
,
∴△EAB≌△EAD,
∴∠AEB=∠AED=22.5°,EB=ED,
∴∠ADE=180°-∠EAD-∠AED=22.5°,
∴∠AED=∠ADE=22.5°,
∴AE=AD=4,
同理证明∠DFC=22.5°,FD=FB,
∴∠DEF=∠DFE,
∴DE=DF,
∴ED=EB=FB=FD,
∴四边形EBFD的面积=
•BD•EF=
×4
((4
+8)=16+16
.
故答案为16+16
.

∵四边形ABCD是正方形,
∴AB=BC=CD=AD=4,∠CAD=∠CAB=45°,
∴∠EAD=∠EAB=135°,
在△EAB和△EAD中,
|
∴△EAB≌△EAD,
∴∠AEB=∠AED=22.5°,EB=ED,
∴∠ADE=180°-∠EAD-∠AED=22.5°,
∴∠AED=∠ADE=22.5°,
∴AE=AD=4,
同理证明∠DFC=22.5°,FD=FB,
∴∠DEF=∠DFE,
∴DE=DF,
∴ED=EB=FB=FD,
∴四边形EBFD的面积=
1 |
2 |
1 |
2 |
2 |
2 |
2 |
故答案为16+16
2 |
看了已知边长为4的正方形ABCD,...的网友还看了以下:
对于任意正数a,b有f(ab)=f(a)+f(b),且f(1)的导数=1 证明f(x) 在零到正无 2020-05-13 …
.函数..用等比数列解也可以.,..定义在正整数集上的的函数y=f(x)对任意a,b∈N,都有f( 2020-06-02 …
针对程序段:IF(A||B||C)THENW=W/X,对于(A,B,C)的取值,(57)测试用例能 2020-07-10 …
已知f(x)在区间(﹣∞,+∞)上是减函数,a,b∈R,且a+b≤0,则下列正确的是?A.f(a) 2020-07-14 …
若函数f(x)是定义在R上的奇函数,且对任意正数a、b都有满足f(a+b)=f(a)*f(b),试 2020-07-15 …
如图一个圆台形铁锭正放时对地面的压力压强分别是F正、P正;倒放时对地面的压力压强分别是F倒、P倒, 2020-07-25 …
如图一个圆台形铁锭正放时对地面的压力压强分别是F正、P正;倒放时对地面的压力压强分别是F倒、P倒, 2020-07-25 …
已知f(x)对任意正数a,b都有f(ab)=f(a)+f(b),且当x>1时,f(x)>0(1)求 2020-07-27 …
已知对于任意a,b∈R,有f(a+b)+f(a-b)=2f(a)*f(b),且f(0)≠0(1)求 2020-07-27 …
1.函数y=根号下(1+x)分之(1-x)的单调减区间是?2.若f(x)是定义在(0,正无穷大)上的 2020-11-01 …