早教吧作业答案频道 -->数学-->
设fx是定义在(0,+无穷大)上的增函数,定义域内的m,n都有f(m/n)=f(m)-f(n)且f(4)=1 解f(x+6)-f(1/x)<2
题目详情
设fx是定义在(0,+无穷大)上的增函数,定义域内的m,n都有f(m/n)=f(m)-f(n)且f(4)=1 解f(x+6)-f(1/x)<2
▼优质解答
答案和解析
对于:f(x+6)-f(1/x)
应用 f(m/n)=f(m)-f(n),也就是m=(x+6),n=1/x,所以有f(x+6)-f(1/x)=f((x+6)/(1/x))=f(x(x+6)).
同理:f(4)=f(16/4)=f(16)-f(4)=f(16)-1=1,
所以 f(16)=2.
综合以上两步就有f(x(x+6))< f(16)了.
在(0,+无穷大)上的增函数,则:x(x+6)
应用 f(m/n)=f(m)-f(n),也就是m=(x+6),n=1/x,所以有f(x+6)-f(1/x)=f((x+6)/(1/x))=f(x(x+6)).
同理:f(4)=f(16/4)=f(16)-f(4)=f(16)-1=1,
所以 f(16)=2.
综合以上两步就有f(x(x+6))< f(16)了.
在(0,+无穷大)上的增函数,则:x(x+6)
看了 设fx是定义在(0,+无穷大...的网友还看了以下:
已知函数f(x)的定义域是x∈N*且f(x)为增函数,f(x)∈N*,f[f(n)]=3n,求f( 2020-05-16 …
函数f(n)是定义在N上的函数,f(n)属于Z,且是严格递增的,当m与n互质,有f(m)f(n)= 2020-05-17 …
已知函数f(x)的定义域为R,对任意实数m,n,满足f(1/2)=2,且f(m+n)=f(m)+f 2020-06-03 …
大一数学题函数f(x)=limarctan(1+x^n){n→∞},函数f(x)=limarcta 2020-06-11 …
求证f(x)是单调递增函数,已知函数f(x)的定义域为R且m、n∈R,恒有f(m+n)=f(m)+ 2020-06-23 …
已知函数f(x)=∣lg[(a+1)x+1]∣(1)求f(x)的定义域(2)当a=0时已知函数f( 2020-07-19 …
已知函数f(x)的定义域为R,对任意的x,y∈R,都有f(x+y)=f(x)*f(y)当x>0时, 2020-07-22 …
若函数f(n)的定义域为N+,f(n)={n-3(n≧1000),{f[f(n+5)](n<100 2020-07-25 …
设函数f(x)的定义域为正整数N,且满足f(m+n)=f(m)+f(n)+mn,f(1)=1求f(n 2020-11-01 …
已知函数f(x)的定义域R,对任意实数m,n都有f(m+n)=f(m)×f(n),且当x>0时.0< 2020-12-08 …