早教吧作业答案频道 -->其他-->
(2010•广安)如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦DE⊥AB分别交⊙O于E,交AB于H,交AC于F.P是ED延长线上一点且PC=PF.(1)求证:PC是⊙O的切线;(2)点D在劣弧AC什么位
题目详情
(2010•广安)如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦DE⊥AB分别交⊙O于E,交AB于H,交A
C于F.P是ED延长线上一点且PC=PF.
(1)求证:PC是⊙O的切线;
(2)点D在劣弧AC什么位置时,才能使AD2=DE•DF,为什么?
(3)在(2)的条件下,若OH=1,AH=2,求弦AC的长.
C于F.P是ED延长线上一点且PC=PF.(1)求证:PC是⊙O的切线;
(2)点D在劣弧AC什么位置时,才能使AD2=DE•DF,为什么?
(3)在(2)的条件下,若OH=1,AH=2,求弦AC的长.
▼优质解答
答案和解析
(1)证明:连接OC.
∵PC=PF,OA=OC,
∴∠PCA=∠PFC,∠OCA=∠OAC,
∵∠PFC=∠AFH,DE⊥AB,
∴∠AHF=90°,
∴∠PCO=∠PCA+∠ACO=∠AFH+∠FAH=90°,
∴PC是⊙O的切线.
(2)点D在劣弧AC中点位置时,才能使AD2=DE•DF,理由如下:
连接AE.
∵点D在劣弧AC中点位置,
∴∠DAF=∠DEA,
∵∠ADE=∠ADE,
∴△DAF∽△DEA,
∴AD:ED=FD:AD,
∴AD2=DE•DF.
(3)连接OD交AC于G.
∵OH=1,AH=2,
∴OA=3,即可得OD=3,
∴DH=
=
=2
.
∵点D在劣弧AC中点位置,
∴AC⊥DO,
∴∠OGA=∠OHD=90°,
在△OGA和△OHD中,
,
∴△OGA≌△OHD(AAS),
∴AG=DH,
∴AC=4
.
(1)证明:连接OC.∵PC=PF,OA=OC,
∴∠PCA=∠PFC,∠OCA=∠OAC,
∵∠PFC=∠AFH,DE⊥AB,
∴∠AHF=90°,
∴∠PCO=∠PCA+∠ACO=∠AFH+∠FAH=90°,
∴PC是⊙O的切线.
(2)点D在劣弧AC中点位置时,才能使AD2=DE•DF,理由如下:连接AE.
∵点D在劣弧AC中点位置,
∴∠DAF=∠DEA,
∵∠ADE=∠ADE,
∴△DAF∽△DEA,
∴AD:ED=FD:AD,
∴AD2=DE•DF.
(3)连接OD交AC于G.∵OH=1,AH=2,
∴OA=3,即可得OD=3,
∴DH=
| OD2−OH2 |
| 8 |
| 2 |
∵点D在劣弧AC中点位置,
∴AC⊥DO,
∴∠OGA=∠OHD=90°,
在△OGA和△OHD中,
|
∴△OGA≌△OHD(AAS),
∴AG=DH,
∴AC=4
| 2 |
看了 (2010•广安)如图,AB...的网友还看了以下:
如图,⊙D的圆心坐标为(0,1).⊙D交y轴于点A(0,-2),交x轴于点C,过C的直线y=-2根 2020-05-13 …
如图,正方形ABCD的对角线AC、BD相交于点O,正方形A′B′C′D′的顶点A′与点O重合,A′ 2020-06-15 …
已知:在三角形ABC中,角C=90度,CM垂直AB于M,AT平分角BAC交CM于D,交BC于T,过 2020-07-17 …
读“黄道平面与赤道平面的交角图”,回答3-4题.下列说法正确的是()A.目前的黄赤交角是66.5° 2020-07-20 …
一个三角形ABC,角A为60度,角B角C的角平分线分别交AB于D交AC于E两线交于点F连接D,E有 2020-07-30 …
价值规律要求的等价交换是指A.每一次具体的交换过程都是等价交换B.等价交换的实现有赖于价格依据供求变 2020-11-21 …
已知AB为圆的直径,CD垂直AB与圆交于C,垂足为D,以C为圆心,CD为半径作圆与前圆交于EF,EF 2020-11-27 …
1、线段是轴对称图形,它的对称轴是2、已知,△已ABC中,AB=AC=14cm,D是AB的中点,DE 2020-11-27 …
直线a,b,c,d交一点P,且a,b,c,d都与直线l相交,交点分别为A,B,C,D,求证a,b,c 2020-11-27 …
在三角形ABC中,AC边上一点D交BC反向延长线为E,且AD=EB,AB交DE于F点,求证EF:FB 2020-12-25 …