早教吧作业答案频道 -->数学-->
推证:f(x+1)=1÷f(x)=>f(x+2)=f(x)f(x+2)=1÷f(x)=>f(x+4)=f(x)可不可以存在规律:f(x+a)=1÷f(x)=>f(x+2a)=f(x)推证:f(x+1)=1÷f(x)=>f(x+2)=f(x)f(x+2)=1÷f(x)=>f(x+4)=f(x)啊,
题目详情
推证:f(x+1)=1÷f(x) =>f (x+2)=f(x) f(x+2)=1÷f(x) => f(x+4)=f(x)
可不可以存在规律:f(x+a)=1÷f(x) => f(x+2a)=f(x)
推证:f(x+1)=1÷f(x) =>f (x+2)=f(x) f(x+2)=1÷f(x) => f(x+4)=f(x)啊,
可不可以存在规律:f(x+a)=1÷f(x) => f(x+2a)=f(x)
推证:f(x+1)=1÷f(x) =>f (x+2)=f(x) f(x+2)=1÷f(x) => f(x+4)=f(x)啊,
▼优质解答
答案和解析
由f(x+1)=1/f(x)——①
得f(x+2)=f[(x+1)+1]=1/f(x+1)——②
将①代人②得f(x+2)=1/(1/f(x))=f(x)
同理可推证:f(x+2)=1÷f(x) => f(x+4)=f(x)
f(x+a)=1÷f(x) => f(x+2a)=f(x)
f(x+a)=1/f(x)——③
得f[(x+a)+a]=1/f(x+a)——④
③代人④f(x+2a)=f(x)
注:[ ]的写法是我发明的,只为看的顺眼
得f(x+2)=f[(x+1)+1]=1/f(x+1)——②
将①代人②得f(x+2)=1/(1/f(x))=f(x)
同理可推证:f(x+2)=1÷f(x) => f(x+4)=f(x)
f(x+a)=1÷f(x) => f(x+2a)=f(x)
f(x+a)=1/f(x)——③
得f[(x+a)+a]=1/f(x+a)——④
③代人④f(x+2a)=f(x)
注:[ ]的写法是我发明的,只为看的顺眼
看了推证:f(x+1)=1÷f(x...的网友还看了以下:
周期函数问题f(x)=-f(x+1)=f((x+1)+1)=f(x+2)“f(x)=-f(x+1) 2020-05-14 …
已知f(x)=log31/4-x,x属于I-5,35/9I(1)求f(x)关于点(2,1)对称的函 2020-05-23 …
我要解题过程已知f(x)=ax方+bx+c,f(0)=0,且f(x+1)=f(x)+x+1,则f( 2020-05-23 …
设f(x)在(-∞,+∞)内可导,且F(x)=f(x^2-1)+f(1-x^2),证明F'(1)= 2020-06-15 …
导数乘法证明中h是什么意思?(f(x)g(x))'=lim(h→0)[f(x+h)g(x+h)-f 2020-07-22 …
已知集合M={f(x)|f(-x)=f(x),x∈R};N={f(x)|f(-x)=-f(x),x 2020-07-30 …
已知定义在R上的函数f(x)是奇函数且满足f(3/2-x)=f(x),f(3/2-x)=f(x)f 2020-08-01 …
求ln[(1+X)/(1-X)]的导数求ln[(1+X)/(1-X)]导数的思路和答案我知道lnx的 2020-10-31 …
已知f(x)的求导f`(x)=-2则lim[f(x0-3△x)-f(x0+△x)]/△x为多少我令他 2020-11-01 …
已知函数f(x)对于任意x,y属于R,总有f(x+y)=f(x)+f(y)-1,X>0时.已知函数f 2020-12-22 …