早教吧作业答案频道 -->数学-->
如图,在△ABC中,∠B=15°,△ABC的面积为2,过点A作AD⊥AB交BC或BC的延长线于点D,MN垂直平分BD,,垂足为N,交AB于点M.(1)求证:BM=2AD;(2)设BC=x,BD=y.求y与x之间的函数解析式,并写出函数定义域.
题目详情
如图,在△ABC中,∠B=15°,△ABC的面积为2,过点A作AD⊥AB交BC或BC的延长线于点D,MN垂直平分BD,
,垂足为N,交AB于点M.
(1)求证:BM=2AD;
(2)设BC=x,BD=y.求y与x之间的函数解析式,并写出函数定义域.
,垂足为N,交AB于点M.
(1)求证:BM=2AD;
(2)设BC=x,BD=y.求y与x之间的函数解析式,并写出函数定义域.
▼优质解答
答案和解析
分析:
1)连接MD,根据线段垂直平分线上的点到线段两端点的距离相等可得BM=MD,再根据等边对等角的性质可得∠MDB=∠B,再利用三角形的一个外角等于与它不相邻的两个内角的和求出∠AMD的度数,然后根据30°所对的直角边等于斜边的一半即可证明;
(2)过点A作AH⊥BD于点H,根据△ABC的面积是2表示出AH,再利用BD及15°的正弦值与余弦值表示出AH,然后整理求解即可得到y与x之间的函数解析式.
(1)证明:∵MN垂直平分BD,
∴BM=MD,
∴∠MBD=∠MDB=15°,
∴∠AMD=∠MBD+∠MDB=30°,
又∵△AMD是直角三角形,
∴MD=2AD(30°角所对的直角边等于斜边的一半),
∵BM=MD,
∴BM=2AD;
(2)过程很难输入,都有根号.相信以你的聪明才智看了分析一定能解答的.
1)连接MD,根据线段垂直平分线上的点到线段两端点的距离相等可得BM=MD,再根据等边对等角的性质可得∠MDB=∠B,再利用三角形的一个外角等于与它不相邻的两个内角的和求出∠AMD的度数,然后根据30°所对的直角边等于斜边的一半即可证明;
(2)过点A作AH⊥BD于点H,根据△ABC的面积是2表示出AH,再利用BD及15°的正弦值与余弦值表示出AH,然后整理求解即可得到y与x之间的函数解析式.
(1)证明:∵MN垂直平分BD,
∴BM=MD,
∴∠MBD=∠MDB=15°,
∴∠AMD=∠MBD+∠MDB=30°,
又∵△AMD是直角三角形,
∴MD=2AD(30°角所对的直角边等于斜边的一半),
∵BM=MD,
∴BM=2AD;
(2)过程很难输入,都有根号.相信以你的聪明才智看了分析一定能解答的.
看了如图,在△ABC中,∠B=15...的网友还看了以下:
设椭圆c:x²/a²+y²/b²=1的右焦点为F,过F的直线l与椭圆C交于A.B两点,直线L的倾斜 2020-05-13 …
对于集合M、N,定义M-N={x|x∈M,且x∉N},M⊕N=(M-N)∪(N-M).设A={y| 2020-06-07 …
程序设计C设x,y,z为整型数,下列各式中,运算结果与x=y=24的表达式相同的是()Ax=(y= 2020-07-14 …
指数运算的问题-=、a,b,c都是正数,且至少有一个不为1,a^x*b^y*c^z=a^y*b^z 2020-07-22 …
关于集合的一些问题,非常急对任意非空集合X、Y,定义:X-Y={x|x∈Y且x不属于Y},X△Y= 2020-08-01 …
1.设函数F(X)=X^2+X-(1/4),若定义域为[a,a+1],值域为[-0.5,1/16], 2020-10-31 …
一道初二数学题,急!设a=x/y+z,b=y/x+z,c=z/x+y,且x+y+z不等于0.求代数式 2020-10-31 …
1+X+X^2+X^3+X^4=0,求X+X^2+X^3+X^4……+X^2005代数式(2X^2+ 2020-10-31 …
对于集合M、N,定义M-N={x|x∈M,且x∉N},M⊗N=(M-N)∪(N-M).设A={y|y 2020-11-06 …
高一数学集合题.设A={y|y=x2+2x+a,x∈R},B={x|3-x≤0},若A包含于B,则实 2020-12-07 …