早教吧作业答案频道 -->数学-->
已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(2,+∞)B.(1,+∞)C.(-∞,-2)D.(-∞,-1)
题目详情
已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是( )
A. (2,+∞)
B. (1,+∞)
C. (-∞,-2)
D. (-∞,-1)
A. (2,+∞)
B. (1,+∞)
C. (-∞,-2)
D. (-∞,-1)
▼优质解答
答案和解析
当a=0时,f(x)=-3x2+1=0,解得x=±
,函数f(x)有两个零点,不符合题意,应舍去;
当a>0时,令f′(x)=3ax2-6x=3ax(x-
)=0,解得x=0或x=
>0,列表如下:
∵x→-∞,f(x)→-∞,而f(0)=1>0,
∴存在x<0,使得f(x)=0,不符合条件:f(x)存在唯一的零点x0,且x0>0,应舍去.
当a<0时,f′(x)=3ax2-6x=3ax(x-
)=0,解得x=0或x=
<0,列表如下:
而f(0)=1>0,x→+∞时,f(x)→-∞,
∴存在x0>0,使得f(x0)=0,
∵f(x)存在唯一的零点x0,且x0>0,
∴极小值f(
)>0,化为a2>4,
∵a<0,∴a<-2.
综上可知:a的取值范围是(-∞,-2).
故选:C.
| ||
3 |
当a>0时,令f′(x)=3ax2-6x=3ax(x-
2 |
a |
2 |
a |
x | (-∞,0) | 0 | (0,
|
| (
| ||||||
f′(x) | + | 0 | - | 0 | + | ||||||
f(x) | 单调递增 | 极大值 | 单调递减 | 极小值 | 单调递增 |
∴存在x<0,使得f(x)=0,不符合条件:f(x)存在唯一的零点x0,且x0>0,应舍去.
当a<0时,f′(x)=3ax2-6x=3ax(x-
2 |
a |
2 |
a |
x | (-∞,
|
| (
| 0 | (0,+∞) | ||||||
f′(x) | - | 0 | + | 0 | - | ||||||
f(x) | 单调递减 | 极小值 | 单调递增 | 极大值 | 单调递减 |
∴存在x0>0,使得f(x0)=0,
∵f(x)存在唯一的零点x0,且x0>0,
∴极小值f(
2 |
a |
∵a<0,∴a<-2.
综上可知:a的取值范围是(-∞,-2).
故选:C.
看了已知函数f(x)=ax3-3x...的网友还看了以下:
matlab 找出x所对应的最大值y,有一组x,每一个x对应很多y值如题所述,假设我的x范围从(- 2020-05-16 …
二次根式:已知y=√(x+2)2+1+√(x-1)2+4,求y最小值以及x值已知y=√(x+2)^ 2020-05-20 …
对一切实数t,函数f(x)是连续正值函数,且可导,又函数g(x)=∫a−amax2(x,t)•f( 2020-06-08 …
已知f(x)=|x-k|+|x-2k|(k>0).(1)当x属于R,k为常数时,求f(x)的最小值 2020-06-11 …
绝对值方程式X^2+5XY-5X-15Y+6=|X-6Y|满足正整数一对X,Y的值当中,求X是最小 2020-07-30 …
一个高中数学问题f(x)>g(x)恒成立的含义是对于任意一个x的值都有f(x)>g(x)?还是f( 2020-07-31 …
1.对于下列函数,试求它们在指定区间上的最大值或最小值,并指出这时的x值:(1)y=(x-1)^2, 2020-10-31 …
已知a=(asijx,−8),b=(sijx,sijax),x∈[π4,πa].(1)若a⊥b,求x 2020-11-02 …
已知函数f(x)=sin²x+2根号3sinxcosx-cos²x(1)求f(x)取得最大值时的x值 2020-12-31 …
利用函数y=-x2的图像回答下列问题:(1)当x=3/2时,y的值是多少?2)当y=-8时,x的值是 2021-01-01 …