早教吧作业答案频道 -->数学-->
设M=2t+it-1×2t-1+…+i1×2+i,其中ik=0或1(k=0,1,2,…,t-1,t∈N+),并记M=(1it-1it-2…i1i)2.对于给定的x1=(1it-1it-2…i1i)2,构造无穷数列{xn}如下:x2=(1iit-1it-2…i2i1)2,x3=(1i1iit-1…i3i2)
题目详情
设M=2t+it-1×2t-1+…+i1×2+i,其中ik=0或1(k=0,1,2,…,t-1,t∈N+),并记M=(1it-1it-2…i1i)2.对于给定的
x1=(1it-1it-2…i1i)2,构造无穷数列{xn}如下:x2=(1iit-1it-2…i2i1)2,x3=(1i1iit-1…i3i2),x4=(1i2i1iit-1…i3)2…,
(1)若x1=109,则x3= (用数字作答);
(2)给定一个正整数m,若x1=22m+2+22m+1+22m+1,则满足xn=x1(n∈N+且n≠1)的n的最小值为 .
x1=(1it-1it-2…i1i)2,构造无穷数列{xn}如下:x2=(1iit-1it-2…i2i1)2,x3=(1i1iit-1…i3i2),x4=(1i2i1iit-1…i3)2…,
(1)若x1=109,则x3= (用数字作答);
(2)给定一个正整数m,若x1=22m+2+22m+1+22m+1,则满足xn=x1(n∈N+且n≠1)的n的最小值为 .
▼优质解答
答案和解析
(1)先将x1=109分成26+25+23+22+1从而得到1it-1it-2…i1i的值,然后根据x3=(1i1iit-1…i3i2)2进行求解即可;
(2)根据x1=22m+2+22m+1+22m+1则x1=(1i2m+1i2m…i1i)2,从而x2=(1ii2m+1i2m…i1)2,x3=(1i1ii2m+1i2m…i2)2,依此类推x2m+3=x1=(1i2m+1i2m…i1i)2,从而得到结论.
【解析】
(1)∵x1=109=26+25+23+22+1
∴x1=(1101101)2而x3=(1i1iit-1…i3i2)2=(1011011)2,
∴x3=26+24+23+21+1=91
(2)∵x1=22m+2+22m+1+22m+1
∴x1=(1i2m+1i2m…i1i)2而x2=(1ii2m+1i2m…i1)2,x3=(1i1ii2m+1i2m…i2)2,
当i跑到最后时移动了2m+2次,此时x2m+3=x1,
满足xn=x1(n∈N+且n≠1)的n的最小值为2m+3
故答案为:91、2m+3
(2)根据x1=22m+2+22m+1+22m+1则x1=(1i2m+1i2m…i1i)2,从而x2=(1ii2m+1i2m…i1)2,x3=(1i1ii2m+1i2m…i2)2,依此类推x2m+3=x1=(1i2m+1i2m…i1i)2,从而得到结论.
【解析】
(1)∵x1=109=26+25+23+22+1
∴x1=(1101101)2而x3=(1i1iit-1…i3i2)2=(1011011)2,
∴x3=26+24+23+21+1=91
(2)∵x1=22m+2+22m+1+22m+1
∴x1=(1i2m+1i2m…i1i)2而x2=(1ii2m+1i2m…i1)2,x3=(1i1ii2m+1i2m…i2)2,
当i跑到最后时移动了2m+2次,此时x2m+3=x1,
满足xn=x1(n∈N+且n≠1)的n的最小值为2m+3
故答案为:91、2m+3
看了设M=2t+it-1×2t-1...的网友还看了以下:
n乘以(n+k)分之一=k分之一乘以n乘(n+k)分之k=k分之一乘以[n分之一减n+k分之一 2020-06-12 …
组合函数C(n,k)在给定的n个元素的集合中求不同的(无序的)k个元素的子集的个数.该函数可以用以 2020-07-29 …
用数学归纳法证明(n+1)(n+2)…(n+n)=2^n·1·3·……·(2n-1)(n∈N*), 2020-08-01 …
数学归纳法为什么要设k?数学归纳法证明的第二步是先设n=k假设n=k时命题成立证明n=k+1时命题 2020-08-01 …
用数学归纳法证明1+2+3+…+n3=n6+n32,则当n=k+1时,左端应在n=k的基础上加上( 2020-08-01 …
已知一个边长为a的等边三角形,现将其边长n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等 2020-08-01 …
1+2+3+4+5+.+n=0.5n^2+n1^2+2^2+3^2.+n^2=n(n+1)(2n+ 2020-08-03 …
设M=2t+it-1×2t-1+…+i1×2+i,其中ik=0或1(k=0,1,2,…,t-1,t∈ 2020-11-01 …
设M=2t+it-1×2t-1+…+i1×2+i0,其中ik=0或1(k=0,1,2,…,t-1,t 2020-11-01 …
设M=2t+it-1×2t-1+…+i1×2+i0,其中ik=0或1(k=0,1,2,…,t-1,t 2020-11-01 …