早教吧作业答案频道 -->数学-->
曲线积分计算∮Γ(x^2+y^2+z^2)dL,其中Γ为曲线x^2+y^2+z^2=4,x+y+z=0的交线求助
题目详情
曲线积分计算∮Γ(x^2+y^2+z^2)dL,其中Γ为曲线x^2+y^2+z^2=4,x+y+z=0的交线
求助
求助
▼优质解答
答案和解析
直接代入方程:
∮Γ (x^2 + y^2 + z^2) ds
= ∮Γ 4 ds
= 4 * 2π(2)
= 16π
或将方程参数化然后计算:
{ x^2 + y^2 + z^2 = 4
{ x + y + z = 0
将z = - x - y代入x^2 + y^2 + z^2 = 4中
==>x^2 + y^2 + xy = 2
(x + y/2)^2 + (√3y/2)^2 = 2
{ x + y/2 = √2cost
{ √3y/2 = 2sint
==>
{ x = √2cost - (√6/3)sint、dx = [- √2sint - (√6/3)cost] dt
{ y = (2√6/3)sint、dy = (2√6/3)cost dt
{ z = - √2cost - (√6/3)sint、dz = [√2sint - (√6/3)cost] dt
0 ≤ t ≤ 2π
ds = √[(dx)^2 + (dy)^2 + (dz)^2] dt = √4 dt = 2 dt
∮Γ (x^2 + y^2 + z^2) ds
= ∫(0→2π) {[√2cost - (√6/3)sint]^2 + [(2√6/3)sint]^2 + [- √2cost - (√6/3)sint]^2} * 2 dt
= ∫(0→2π) 4 * 2 dt
= 8 * 2π
= 16π
∮Γ (x^2 + y^2 + z^2) ds
= ∮Γ 4 ds
= 4 * 2π(2)
= 16π
或将方程参数化然后计算:
{ x^2 + y^2 + z^2 = 4
{ x + y + z = 0
将z = - x - y代入x^2 + y^2 + z^2 = 4中
==>x^2 + y^2 + xy = 2
(x + y/2)^2 + (√3y/2)^2 = 2
{ x + y/2 = √2cost
{ √3y/2 = 2sint
==>
{ x = √2cost - (√6/3)sint、dx = [- √2sint - (√6/3)cost] dt
{ y = (2√6/3)sint、dy = (2√6/3)cost dt
{ z = - √2cost - (√6/3)sint、dz = [√2sint - (√6/3)cost] dt
0 ≤ t ≤ 2π
ds = √[(dx)^2 + (dy)^2 + (dz)^2] dt = √4 dt = 2 dt
∮Γ (x^2 + y^2 + z^2) ds
= ∫(0→2π) {[√2cost - (√6/3)sint]^2 + [(2√6/3)sint]^2 + [- √2cost - (√6/3)sint]^2} * 2 dt
= ∫(0→2π) 4 * 2 dt
= 8 * 2π
= 16π
看了曲线积分计算∮Γ(x^2+y^...的网友还看了以下:
曲面x^2+y^2+z^2-xy=1在YOZ坐标面上的投影区域的边界曲线的方程为()A:3Y^2+ 2020-06-14 …
设f(x)为连续函数,f(0)=a,F(t)=∫∫∫Ω{z-f(x^2+y^2+z^2)]dv,其 2020-06-15 …
求1+2+2^2+2^3+2^4+…+2^2014的值.设S=1+2+2^2+2^3+2^4+…+ 2020-07-09 …
若a+b+c=1,求√(3a+1)+√(3b+1)+√(3c+1)的最大值设x=√(3a+1),y= 2020-10-31 …
xyz=1,x+y+z=2,x^2+y^2+z^2=3,求x,y,z我解:xy=1/z,x+y=2- 2020-10-31 …
已知xˇ2+yˇ2+zˇ2-2x+4y-6z+14=0,求x+y+z网上说可以等于(X²-2X+1) 2020-10-31 …
(1).-3ma^3+6ma^-12ma(2).x^6n+2+2x^3n+2+x^2(3).5(x- 2020-10-31 …
观察下列各式然后回答问题:1-1/2^2=1/2*2/3,1-1/3^2+2/3*4/3,1-1/4 2020-11-01 …
求Ω={(x,y,z)|√(x^2+y^2)≤z≤√(2-x^2-y^2)}在Oxy平面的投影域书上 2020-11-11 …
已知a,b属于正实数a^2+b^2/2=1求y=a√(1+b^2)的最大值参考书上是用y^2=[a√ 2020-12-31 …