早教吧作业答案频道 -->数学-->
1.设x,y,z∈R,求证:x^2+xz+z^2+3y(x+y+z)≥0
题目详情
1.设x,y,z∈R,求证:x^2+xz+z^2+3y(x+y+z)≥0
▼优质解答
答案和解析
x^2+xz+z^2+3y(x+y+z)=x^2+xz+z^2+3y^2+3yz+3yx
=(x+y)^2+(z+y)^2+y^2+xy+xz+yz=(x+y)^2+(z+y)^2+y*(x+y)+z(x+y)
=(x+y)^2+(z+y)^2+(x+y)(y+z)>=0
x,y,z均为零时取等
=(x+y)^2+(z+y)^2+y^2+xy+xz+yz=(x+y)^2+(z+y)^2+y*(x+y)+z(x+y)
=(x+y)^2+(z+y)^2+(x+y)(y+z)>=0
x,y,z均为零时取等
看了1.设x,y,z∈R,求证:x...的网友还看了以下:
因式分解:6x^2-7xy-3y^2-xz+7xz-2z^2 2020-07-13 …
因式分解1.2x^3–x^2z–4x^2y+2xyz+2xy^2–y^2z2.6x^2-7xy-3 2020-08-01 …
(请注明用什么方法分解因式的!)分解因式:(1)x^2-3xy-10y^2+x+9y-2;(2)x^ 2020-10-31 …
要求详解,不要照抄答案,给30分以下几道因式分解,望详解:x^3-9x+8x^2-3xy-10y^2 2020-10-31 …
证明设X.Y.Z都是实数,且满足XY+YZ+XZ=1,那么X+Y+Z=XYZ一定不成立.可以用反证法 2020-11-01 …
不等式证明设x,y,z属于R,求证:x^2+y^2+z^2>=xy+yz+xz 2020-11-01 …
求证x^2+xz+z^2+3y(x+y+z)>=0xyz为R 2020-11-01 …
在有理数域内分解因式2x^2+5xy-3y^2+xz+10yz-3z^2 2020-11-01 …
1.设x,y,z∈R,求证:x^2+xz+z^2+3y(x+y+z)≥0 2020-11-01 …
设x>0,y>0.z>0,且x+y+z=1⑴求证xy+yz+xz≤1⑵求(yz/x+xz/y+xy/ 2020-11-01 …