早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设x,y,z属于R,求证:x²+xz+z²+3y(x+y+z)≥0

题目详情
设x,y,z属于R,求证:x²+xz+z²+3y(x+y+z)≥0
▼优质解答
答案和解析
证明:
x^2+xz+z^2+3y(x+y+z)
=x^2+xz+z^2+3y^2+3yz+3yx
=(x+y)^2+(z+y)^2+y^2+xy+xz+yz
=(x+y)^2+(z+y)^2+y*(x+y)+z(x+y)
=(x+y)^2+(z+y)^2+(x+y)(y+z)
≥0
当x,y,z均为零时取等