早教吧作业答案频道 -->数学-->
设x,y,z属于R,求证:x²+xz+z²+3y(x+y+z)≥0
题目详情
设x,y,z属于R,求证:x²+xz+z²+3y(x+y+z)≥0
▼优质解答
答案和解析
证明:
x^2+xz+z^2+3y(x+y+z)
=x^2+xz+z^2+3y^2+3yz+3yx
=(x+y)^2+(z+y)^2+y^2+xy+xz+yz
=(x+y)^2+(z+y)^2+y*(x+y)+z(x+y)
=(x+y)^2+(z+y)^2+(x+y)(y+z)
≥0
当x,y,z均为零时取等
x^2+xz+z^2+3y(x+y+z)
=x^2+xz+z^2+3y^2+3yz+3yx
=(x+y)^2+(z+y)^2+y^2+xy+xz+yz
=(x+y)^2+(z+y)^2+y*(x+y)+z(x+y)
=(x+y)^2+(z+y)^2+(x+y)(y+z)
≥0
当x,y,z均为零时取等
看了设x,y,z属于R,求证:x²...的网友还看了以下:
已知x/(y+z+u)=y/(z+u+x)=z/(u+x+y)=u/(x+y+z),求(x+y)/ 2020-06-12 …
1.已知z是虚数,求证:z+1/z为实数的充要条件是|z|=1.证法一:因为|z|=1,所以zz' 2020-06-12 …
若z^2+z+1=0,求(1+z)*(1+z^2)*(1+z^4)*(1+z^8)…(1+z^1若 2020-06-30 …
①x:y=2:3;x:z=3:4;x+y+z=4:6②x、y、z都是非负整数,x+y+z=100; 2020-07-08 …
1.已知|z|=1,且z^2+2z+1/z是负实数,求复数z2.已知|z|=1,且z为虚数,u=( 2020-07-30 …
已知复数z的实部和虚部都是整数,(Ⅰ)若复数z为纯虚数,且|z-1|=|-1+i|,求复数z;(Ⅱ 2020-07-30 …
三元一次方程组,会的进,聪明的进第一题3x-4y=4,5x+2y+3z=2,z=2x-7求x,y, 2020-08-03 …
若x/3=y/4=z/5(z不等于0),求x+y+z/x-y-z的值.提示:可先令x/3=y/4=z 2020-10-31 …
设实数x>0,y>0,z>0,a>0,b>0,且x,y,z满足条件x^2+y^2-xy=a^2;x^ 2020-11-01 …
设z=z(x,y)由下列方程所确定试求dz(1)e^z-xyz=0那个像倒6的符号不会打我在这里用D 2020-11-07 …