早教吧作业答案频道 -->数学-->
已知:如图,A,K是圆O上的两点,直线FN垂直于MA,垂足为N,FN与圆O相切与点F,角AOK=2角MAK.1》求证:MN是圆O的切线:2》若点B是圆O上的一动点,BO的延长线交圆于点C,交NF于点D,连接AC并延长交于点E,当FD
题目详情
已知:如图,A,K是圆O上的两点,直线FN垂直于MA,垂足为N,FN与圆O相切与点F,角AOK=2角MAK.
1》求证:MN是圆O的切线:
2》若点B是圆O上的一动点,BO的延长线交圆于点C,交NF于点D,连接AC并延长交于点E,当FD=2EDSHI ,求角NAE的正切值
1》求证:MN是圆O的切线:
2》若点B是圆O上的一动点,BO的延长线交圆于点C,交NF于点D,连接AC并延长交于点E,当FD=2EDSHI ,求角NAE的正切值
▼优质解答
答案和解析
(1)证明:∵OA=OK,
∴∠3=∠AKO.
∵∠2+∠3+∠AKO=180°,∠AOK=2∠MAK,
∴∠MAK+∠OAK=90°;
∴MN是圆O的切线.
(2)∵MN是圆O的切线,
∴∠1=∠B,
∴∠4=∠2.
又∵∠2=∠3,
∴∠4=∠3,
∴DC=DE.
∵NF切圆O于F,
∴∠OFN=90°,
又∵∠NAO=90°,
∴四边形AOFN是矩形.
∵OA=OF,
∴矩形AOFN是正方形,
∴AN=NF=OF.
∵NF切圆O于F,
∴FD2=DC?DB.
∵FD=2ED,
设ED=x,则CD=ED=x,
∴(2x)2=x(x+2r),
解得x=
2
3
r.
在△AEN中,∠ANE=90°,
cot∠AEN=
NE
AN
=
NF+FE
AN
=
3r
r
,
cot∠AEN=
NE
AN
=
NE+FE
AN
=
3r
r
=3,
同理:x=
2
3
r.
在△AEN中,∠ANE=90°.
cot∠AEN=
NE
AN
=
NE+FE
AN
=
1
3
r
r
=
1
3
,
∴∠AEN的余切值为3或
1
3
.
∴∠3=∠AKO.
∵∠2+∠3+∠AKO=180°,∠AOK=2∠MAK,
∴∠MAK+∠OAK=90°;
∴MN是圆O的切线.
(2)∵MN是圆O的切线,
∴∠1=∠B,
∴∠4=∠2.
又∵∠2=∠3,
∴∠4=∠3,
∴DC=DE.
∵NF切圆O于F,
∴∠OFN=90°,
又∵∠NAO=90°,
∴四边形AOFN是矩形.
∵OA=OF,
∴矩形AOFN是正方形,
∴AN=NF=OF.
∵NF切圆O于F,
∴FD2=DC?DB.
∵FD=2ED,
设ED=x,则CD=ED=x,
∴(2x)2=x(x+2r),
解得x=
2
3
r.
在△AEN中,∠ANE=90°,
cot∠AEN=
NE
AN
=
NF+FE
AN
=
3r
r
,
cot∠AEN=
NE
AN
=
NE+FE
AN
=
3r
r
=3,
同理:x=
2
3
r.
在△AEN中,∠ANE=90°.
cot∠AEN=
NE
AN
=
NE+FE
AN
=
1
3
r
r
=
1
3
,
∴∠AEN的余切值为3或
1
3
.
看了已知:如图,A,K是圆O上的两...的网友还看了以下:
r,o,a,n,f,o,t,n,e连词成句是啥啊? 2020-03-31 …
英语达.请把下列个题中的字母组成一个你所学过的单词.o,m,w,l,c,e,ee,g,h,t,io 2020-05-13 …
定义映射f:A→B,其中A={(m,n)|m,n∈R}接着 B=R,已知对所有的有序正整数对(m, 2020-05-16 …
谁帮我做下下面的关于时间复杂度的习题?f(n)=100n^3+n^2+1000,g(n)=25n^ 2020-06-12 …
AB为圆O的直径,CD为圆0的玄且与AB垂直,E为AB上的任意一点,连接C.E与圆O交与F连接D. 2020-07-02 …
给下面的字选择正确的读音。俊jìn()jùn()掠liè()lüè()俏qiào()xiāo()沾 2020-07-12 …
一个有关大O(阶)的问题求两个单调递增函数f(n)和g(n)(n为自然数),f(n)≠O(g(n) 2020-07-31 …
设f(N)、g(N)是定义在正数集上的正函数.如果存在正的常数C和自然数N0,使得当N≥N0时有f 2020-07-31 …
下列有关物质性质的比较顺序中,不正确的是()A.热稳定性:NH3>PH3>SiH4B.微粒半径:K+ 2020-11-26 …
正三角形ABC内接于圆O,M、N分别是AB、AC的中点,延长MN交圆O于F,连接BF交AC于点P,则 2020-12-31 …