早教吧作业答案频道 -->数学-->
已知动直线l过点P(4,0).交抛物线y^2=2mx(m>0)于A,B两点,O为原点,Q是P关于O的对称点(1)求证角AQP=角BQP(2)当m=2时,垂直x轴的直线t被以AP为直径的圆截得的弦长恒为定值,求t的方程
题目详情
已知动直线l过点P(4,0).交抛物线y^2=2mx(m>0)于A,B两点,O为原点,Q是P关于O的对称点
(1)求证角AQP=角BQP
(2)当m=2时,垂直x轴的直线t被以AP为直径的圆截得的弦长恒为定值,求t的方程
(1)求证角AQP=角BQP
(2)当m=2时,垂直x轴的直线t被以AP为直径的圆截得的弦长恒为定值,求t的方程
▼优质解答
答案和解析
(1)
设过点P(4,0)的动直线l方程为x=ky+4(因为交抛物线于A,B两点,所以不为x轴,但可以与x轴平行,故如上所设)
将x=ky+4与y^2=2mx联立,得y^2-2mky-8m=0
令A、B两点坐标为(x1,y1)、(x2,y2)有:y1+y2=2mk,y1*y2=-8m(据已知可知该直线过抛物线内定点,与其定有交点,故不必列出△判别式)
据以知有Q(-4,0).令角AQP斜率为k1,角BQP斜率为k2.
k1=y1/(x1+4),k2=y2/(x2+4)所以有k1/k2=y1(x2+4)/y2(x1+4)=y1(ky2+8)/y2(ky1+8)=y1(-8mk/y1 +8)/y2(-8mk/y2 +8)因为y1*y2=-8m
原式=(8y1-8mk)/(8y2-8mk)=(8y1-8mk)/(8mk-8y1)=-1因为y1+y2=2mk
即k1=-k2,所以角AQP=角BQP
(2)
当m=2时,y^2=4x,焦点为(1,0),令t:x=t,以A(a,b)P为直径的圆方程为
(x-a)(x-4)+y(y-b)=0(利用向量求出)
化简得:(x-(4+a)/2)^2+(y-b/2)^2=((a-4)^2+b^2)/4
所以圆心得((4+a)/2,b/2),半径平方为((a-4)^2+b^2)/4
直线t被圆截得的弦长恒为定值,所以有((a-4)^2+b^2)/4-((4+a)/2 -t)^2为定值,根据b^2=4a整理可得
代数式=a(t-2)+t(4-t),使其为定值,即与a的取值无关,有t=2
所以直线为x=2,且弦长为4
设过点P(4,0)的动直线l方程为x=ky+4(因为交抛物线于A,B两点,所以不为x轴,但可以与x轴平行,故如上所设)
将x=ky+4与y^2=2mx联立,得y^2-2mky-8m=0
令A、B两点坐标为(x1,y1)、(x2,y2)有:y1+y2=2mk,y1*y2=-8m(据已知可知该直线过抛物线内定点,与其定有交点,故不必列出△判别式)
据以知有Q(-4,0).令角AQP斜率为k1,角BQP斜率为k2.
k1=y1/(x1+4),k2=y2/(x2+4)所以有k1/k2=y1(x2+4)/y2(x1+4)=y1(ky2+8)/y2(ky1+8)=y1(-8mk/y1 +8)/y2(-8mk/y2 +8)因为y1*y2=-8m
原式=(8y1-8mk)/(8y2-8mk)=(8y1-8mk)/(8mk-8y1)=-1因为y1+y2=2mk
即k1=-k2,所以角AQP=角BQP
(2)
当m=2时,y^2=4x,焦点为(1,0),令t:x=t,以A(a,b)P为直径的圆方程为
(x-a)(x-4)+y(y-b)=0(利用向量求出)
化简得:(x-(4+a)/2)^2+(y-b/2)^2=((a-4)^2+b^2)/4
所以圆心得((4+a)/2,b/2),半径平方为((a-4)^2+b^2)/4
直线t被圆截得的弦长恒为定值,所以有((a-4)^2+b^2)/4-((4+a)/2 -t)^2为定值,根据b^2=4a整理可得
代数式=a(t-2)+t(4-t),使其为定值,即与a的取值无关,有t=2
所以直线为x=2,且弦长为4
看了 已知动直线l过点P(4,0)...的网友还看了以下:
矩形公园ABCD中,原有两条与ADAB平行的小路EF、GH,它们相交于Q,两条小路将公园分成了四个 2020-05-13 …
已知直线l:y=kx+1交曲线C:y=ax^2(a>0)于P、Q两点,M为PQ中点,分别过P、Q两 2020-05-15 …
如图所示,P是一个光屏,屏上有直径为5厘米的圆孔.Q是一块平面镜,与屏平行放置且相距10厘米.O1 2020-06-23 …
如图所示,P是一个光屏,屏上有直径为5厘米的圆孔。Q是一块平面镜,与屏平行放置且相距10厘米。O1 2020-07-13 …
P是一个光屏,屏上有直径为5厘米的圆孔.Q是一块平面镜,与屏平行放置且相距10厘米.O1、02是过 2020-07-16 …
如图,已知直线PA:y=x+1交y轴于Q,直线PB:y=-2x+m.若四边形PQOB的面积为56, 2020-07-17 …
正方形ABCD边长为4,E为BC中点,P为AB上一动点,沿PE翻折三角形BPE得三角形FPE,直正 2020-07-20 …
问个关于充分条件的问题一:P同位角相等q两直线平行为什么说是充分必要条件?两直线平行不是还有内错角 2020-07-29 …
已知:正方形ABCD的边长为4,点E为BC边的中点,点P为AB边上一动点,联结PE,过E作EQ⊥P 2020-08-03 …
p:同位脚相等,q:两直线平行!p是q的什么条件呢?亲,说清楚点噢,我认为是充要条件 2020-12-10 …