早教吧作业答案频道 -->数学-->
已知动直线l过点P(4,0).交抛物线y^2=2mx(m>0)于A,B两点,O为原点,Q是P关于O的对称点(1)求证角AQP=角BQP(2)当m=2时,垂直x轴的直线t被以AP为直径的圆截得的弦长恒为定值,求t的方程
题目详情
已知动直线l过点P(4,0).交抛物线y^2=2mx(m>0)于A,B两点,O为原点,Q是P关于O的对称点
(1)求证角AQP=角BQP
(2)当m=2时,垂直x轴的直线t被以AP为直径的圆截得的弦长恒为定值,求t的方程
(1)求证角AQP=角BQP
(2)当m=2时,垂直x轴的直线t被以AP为直径的圆截得的弦长恒为定值,求t的方程
▼优质解答
答案和解析
(1)
设过点P(4,0)的动直线l方程为x=ky+4(因为交抛物线于A,B两点,所以不为x轴,但可以与x轴平行,故如上所设)
将x=ky+4与y^2=2mx联立,得y^2-2mky-8m=0
令A、B两点坐标为(x1,y1)、(x2,y2)有:y1+y2=2mk,y1*y2=-8m(据已知可知该直线过抛物线内定点,与其定有交点,故不必列出△判别式)
据以知有Q(-4,0).令角AQP斜率为k1,角BQP斜率为k2.
k1=y1/(x1+4),k2=y2/(x2+4)所以有k1/k2=y1(x2+4)/y2(x1+4)=y1(ky2+8)/y2(ky1+8)=y1(-8mk/y1 +8)/y2(-8mk/y2 +8)因为y1*y2=-8m
原式=(8y1-8mk)/(8y2-8mk)=(8y1-8mk)/(8mk-8y1)=-1因为y1+y2=2mk
即k1=-k2,所以角AQP=角BQP
(2)
当m=2时,y^2=4x,焦点为(1,0),令t:x=t,以A(a,b)P为直径的圆方程为
(x-a)(x-4)+y(y-b)=0(利用向量求出)
化简得:(x-(4+a)/2)^2+(y-b/2)^2=((a-4)^2+b^2)/4
所以圆心得((4+a)/2,b/2),半径平方为((a-4)^2+b^2)/4
直线t被圆截得的弦长恒为定值,所以有((a-4)^2+b^2)/4-((4+a)/2 -t)^2为定值,根据b^2=4a整理可得
代数式=a(t-2)+t(4-t),使其为定值,即与a的取值无关,有t=2
所以直线为x=2,且弦长为4
设过点P(4,0)的动直线l方程为x=ky+4(因为交抛物线于A,B两点,所以不为x轴,但可以与x轴平行,故如上所设)
将x=ky+4与y^2=2mx联立,得y^2-2mky-8m=0
令A、B两点坐标为(x1,y1)、(x2,y2)有:y1+y2=2mk,y1*y2=-8m(据已知可知该直线过抛物线内定点,与其定有交点,故不必列出△判别式)
据以知有Q(-4,0).令角AQP斜率为k1,角BQP斜率为k2.
k1=y1/(x1+4),k2=y2/(x2+4)所以有k1/k2=y1(x2+4)/y2(x1+4)=y1(ky2+8)/y2(ky1+8)=y1(-8mk/y1 +8)/y2(-8mk/y2 +8)因为y1*y2=-8m
原式=(8y1-8mk)/(8y2-8mk)=(8y1-8mk)/(8mk-8y1)=-1因为y1+y2=2mk
即k1=-k2,所以角AQP=角BQP
(2)
当m=2时,y^2=4x,焦点为(1,0),令t:x=t,以A(a,b)P为直径的圆方程为
(x-a)(x-4)+y(y-b)=0(利用向量求出)
化简得:(x-(4+a)/2)^2+(y-b/2)^2=((a-4)^2+b^2)/4
所以圆心得((4+a)/2,b/2),半径平方为((a-4)^2+b^2)/4
直线t被圆截得的弦长恒为定值,所以有((a-4)^2+b^2)/4-((4+a)/2 -t)^2为定值,根据b^2=4a整理可得
代数式=a(t-2)+t(4-t),使其为定值,即与a的取值无关,有t=2
所以直线为x=2,且弦长为4
看了 已知动直线l过点P(4,0)...的网友还看了以下:
处于圆轨的卫星变轨时,一直向正上方垂直加速,轨道会发生什么变化?我觉得应该是轨道被拉长成椭圆形,并 2020-06-06 …
如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P,在近岸取点Q和S,使点P、Q、S共线且直 2020-07-24 …
已知L经过抛物线的焦点F、且与抛物线交与p;q直线l经过抛物线y2=4px(p>0)的焦点F,且与 2020-07-26 …
三棱锥内证明一点是垂心的问题三棱锥V-ABC的三条侧棱VAVBVC两两垂直,顶点V在底面内的射影是 2020-07-30 …
已知三角形ABC中一点P使向量PA乘以向量PB=向量PB乘以向量PC=向量PC乘以向量PA则这一点 2020-07-30 …
点P、Q在反比例函数y=x分之k(k大于0)第一象限内的图像上,过点P作PE垂直于y轴,过点Q作Q 2020-08-01 …
如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P,在近岸取点Q和S,使点P、Q、S共线且直线 2020-12-19 …
如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S在一条直线上,且 2020-12-19 …
求指教弧形的弦跟弧的对应点是垂直于线找还是垂直于弧找啊大神们帮帮忙求指教弧形的弦跟弧的对应点是垂直于 2020-12-25 …
求指教弧形的弦跟弧的对应点是垂直于线找还是垂直于弧找啊这个是垂直于弦找的这个是垂直于弧找的 2020-12-25 …