早教吧作业答案频道 -->数学-->
已知动直线l过点P(4,0).交抛物线y^2=2mx(m>0)于A,B两点,O为原点,Q是P关于O的对称点(1)求证角AQP=角BQP(2)当m=2时,垂直x轴的直线t被以AP为直径的圆截得的弦长恒为定值,求t的方程
题目详情
已知动直线l过点P(4,0).交抛物线y^2=2mx(m>0)于A,B两点,O为原点,Q是P关于O的对称点
(1)求证角AQP=角BQP
(2)当m=2时,垂直x轴的直线t被以AP为直径的圆截得的弦长恒为定值,求t的方程
(1)求证角AQP=角BQP
(2)当m=2时,垂直x轴的直线t被以AP为直径的圆截得的弦长恒为定值,求t的方程
▼优质解答
答案和解析
(1)
设过点P(4,0)的动直线l方程为x=ky+4(因为交抛物线于A,B两点,所以不为x轴,但可以与x轴平行,故如上所设)
将x=ky+4与y^2=2mx联立,得y^2-2mky-8m=0
令A、B两点坐标为(x1,y1)、(x2,y2)有:y1+y2=2mk,y1*y2=-8m(据已知可知该直线过抛物线内定点,与其定有交点,故不必列出△判别式)
据以知有Q(-4,0).令角AQP斜率为k1,角BQP斜率为k2.
k1=y1/(x1+4),k2=y2/(x2+4)所以有k1/k2=y1(x2+4)/y2(x1+4)=y1(ky2+8)/y2(ky1+8)=y1(-8mk/y1 +8)/y2(-8mk/y2 +8)因为y1*y2=-8m
原式=(8y1-8mk)/(8y2-8mk)=(8y1-8mk)/(8mk-8y1)=-1因为y1+y2=2mk
即k1=-k2,所以角AQP=角BQP
(2)
当m=2时,y^2=4x,焦点为(1,0),令t:x=t,以A(a,b)P为直径的圆方程为
(x-a)(x-4)+y(y-b)=0(利用向量求出)
化简得:(x-(4+a)/2)^2+(y-b/2)^2=((a-4)^2+b^2)/4
所以圆心得((4+a)/2,b/2),半径平方为((a-4)^2+b^2)/4
直线t被圆截得的弦长恒为定值,所以有((a-4)^2+b^2)/4-((4+a)/2 -t)^2为定值,根据b^2=4a整理可得
代数式=a(t-2)+t(4-t),使其为定值,即与a的取值无关,有t=2
所以直线为x=2,且弦长为4
设过点P(4,0)的动直线l方程为x=ky+4(因为交抛物线于A,B两点,所以不为x轴,但可以与x轴平行,故如上所设)
将x=ky+4与y^2=2mx联立,得y^2-2mky-8m=0
令A、B两点坐标为(x1,y1)、(x2,y2)有:y1+y2=2mk,y1*y2=-8m(据已知可知该直线过抛物线内定点,与其定有交点,故不必列出△判别式)
据以知有Q(-4,0).令角AQP斜率为k1,角BQP斜率为k2.
k1=y1/(x1+4),k2=y2/(x2+4)所以有k1/k2=y1(x2+4)/y2(x1+4)=y1(ky2+8)/y2(ky1+8)=y1(-8mk/y1 +8)/y2(-8mk/y2 +8)因为y1*y2=-8m
原式=(8y1-8mk)/(8y2-8mk)=(8y1-8mk)/(8mk-8y1)=-1因为y1+y2=2mk
即k1=-k2,所以角AQP=角BQP
(2)
当m=2时,y^2=4x,焦点为(1,0),令t:x=t,以A(a,b)P为直径的圆方程为
(x-a)(x-4)+y(y-b)=0(利用向量求出)
化简得:(x-(4+a)/2)^2+(y-b/2)^2=((a-4)^2+b^2)/4
所以圆心得((4+a)/2,b/2),半径平方为((a-4)^2+b^2)/4
直线t被圆截得的弦长恒为定值,所以有((a-4)^2+b^2)/4-((4+a)/2 -t)^2为定值,根据b^2=4a整理可得
代数式=a(t-2)+t(4-t),使其为定值,即与a的取值无关,有t=2
所以直线为x=2,且弦长为4
看了 已知动直线l过点P(4,0)...的网友还看了以下:
关于一次函数及坐标系的两个问题已知点P在Y=kX+b上其坐标为(a,b)现过点P做垂直于Y的直线Y2 2020-03-30 …
有关 概率密度和联合分布函数问题已知二维随机变量(X,Y)具有概率密度f(x,y)= 2e-(2x 2020-05-16 …
函数应用题点P(x,y)是直线x+y=8在第一象限内点,点A(6,0),设△OPA的面积为S.1. 2020-06-14 …
设点P(x,y)是直线y=-x+6上第一象限内的点,A(4,0),△POA的面积为S.(1)写出S 2020-06-21 …
设点P(x,y)是直线x+y=6上第一象限内的点,A(4,0),△OPA的面积为S1.写出S关于x 2020-06-21 …
如图,已知抛物线y等于负2分之一x平方加x加4交x的正半轴于点a4.0交于点b0.4求直线函数达设 2020-07-09 …
平行于x轴直线上的点的相同;平行于y轴直线上的点的相同; 2020-07-29 …
(1)设x=a^2-2b+三分之一π,y=b^2-2c+六分之一π,z=c^2-2a+二分之一π( 2020-08-01 …
已知一个样本为x,1,y,5,其中点(x,y)是直线x+y=2和圆x2+y2=10的交点,则这个样 2020-08-03 …
3个概率统计题1、已知二维随机变量(X,Y)具有概率密度f(x,y)=2e-(2x+y),x>0,y 2020-11-01 …