早教吧作业答案频道 -->数学-->
已知动直线l过点P(4,0).交抛物线y^2=2mx(m>0)于A,B两点,O为原点,Q是P关于O的对称点(1)求证角AQP=角BQP(2)当m=2时,垂直x轴的直线t被以AP为直径的圆截得的弦长恒为定值,求t的方程
题目详情
已知动直线l过点P(4,0).交抛物线y^2=2mx(m>0)于A,B两点,O为原点,Q是P关于O的对称点
(1)求证角AQP=角BQP
(2)当m=2时,垂直x轴的直线t被以AP为直径的圆截得的弦长恒为定值,求t的方程
(1)求证角AQP=角BQP
(2)当m=2时,垂直x轴的直线t被以AP为直径的圆截得的弦长恒为定值,求t的方程
▼优质解答
答案和解析
(1)
设过点P(4,0)的动直线l方程为x=ky+4(因为交抛物线于A,B两点,所以不为x轴,但可以与x轴平行,故如上所设)
将x=ky+4与y^2=2mx联立,得y^2-2mky-8m=0
令A、B两点坐标为(x1,y1)、(x2,y2)有:y1+y2=2mk,y1*y2=-8m(据已知可知该直线过抛物线内定点,与其定有交点,故不必列出△判别式)
据以知有Q(-4,0).令角AQP斜率为k1,角BQP斜率为k2.
k1=y1/(x1+4),k2=y2/(x2+4)所以有k1/k2=y1(x2+4)/y2(x1+4)=y1(ky2+8)/y2(ky1+8)=y1(-8mk/y1 +8)/y2(-8mk/y2 +8)因为y1*y2=-8m
原式=(8y1-8mk)/(8y2-8mk)=(8y1-8mk)/(8mk-8y1)=-1因为y1+y2=2mk
即k1=-k2,所以角AQP=角BQP
(2)
当m=2时,y^2=4x,焦点为(1,0),令t:x=t,以A(a,b)P为直径的圆方程为
(x-a)(x-4)+y(y-b)=0(利用向量求出)
化简得:(x-(4+a)/2)^2+(y-b/2)^2=((a-4)^2+b^2)/4
所以圆心得((4+a)/2,b/2),半径平方为((a-4)^2+b^2)/4
直线t被圆截得的弦长恒为定值,所以有((a-4)^2+b^2)/4-((4+a)/2 -t)^2为定值,根据b^2=4a整理可得
代数式=a(t-2)+t(4-t),使其为定值,即与a的取值无关,有t=2
所以直线为x=2,且弦长为4
设过点P(4,0)的动直线l方程为x=ky+4(因为交抛物线于A,B两点,所以不为x轴,但可以与x轴平行,故如上所设)
将x=ky+4与y^2=2mx联立,得y^2-2mky-8m=0
令A、B两点坐标为(x1,y1)、(x2,y2)有:y1+y2=2mk,y1*y2=-8m(据已知可知该直线过抛物线内定点,与其定有交点,故不必列出△判别式)
据以知有Q(-4,0).令角AQP斜率为k1,角BQP斜率为k2.
k1=y1/(x1+4),k2=y2/(x2+4)所以有k1/k2=y1(x2+4)/y2(x1+4)=y1(ky2+8)/y2(ky1+8)=y1(-8mk/y1 +8)/y2(-8mk/y2 +8)因为y1*y2=-8m
原式=(8y1-8mk)/(8y2-8mk)=(8y1-8mk)/(8mk-8y1)=-1因为y1+y2=2mk
即k1=-k2,所以角AQP=角BQP
(2)
当m=2时,y^2=4x,焦点为(1,0),令t:x=t,以A(a,b)P为直径的圆方程为
(x-a)(x-4)+y(y-b)=0(利用向量求出)
化简得:(x-(4+a)/2)^2+(y-b/2)^2=((a-4)^2+b^2)/4
所以圆心得((4+a)/2,b/2),半径平方为((a-4)^2+b^2)/4
直线t被圆截得的弦长恒为定值,所以有((a-4)^2+b^2)/4-((4+a)/2 -t)^2为定值,根据b^2=4a整理可得
代数式=a(t-2)+t(4-t),使其为定值,即与a的取值无关,有t=2
所以直线为x=2,且弦长为4
看了 已知动直线l过点P(4,0)...的网友还看了以下:
M(x,y,z)点为空间一点,其垂直于x轴,y轴,z轴对应的距离分别是a,b,cm点到原点的距离为r 2020-03-30 …
在直角坐标系内,点A在x轴正半轴上,点B在y轴负半轴上,且A点与原点的距离为B点与原点距离的2倍, 2020-05-16 …
.抛物线(要过程)过椭圆X2+2Y²=2的有焦点作垂线于X轴的直线M,设直线M与椭圆相交于A.B两 2020-06-03 …
已知:平面直角坐标系内有两点A,B,点A(-6,a+3)在x轴上,点B(b-2,5)在y轴上.(1 2020-06-14 …
已知点A(1,0).点R在y轴上运动,T在x轴上,N为动点,已知点A(1,0).点R在y轴上运动, 2020-07-22 …
数轴上点A对应的数为a,点B对应的数为b,点A在负半轴,且|a|=3,b是最小的正整数.(Ⅰ)求线 2020-07-30 …
初三数学题抛物线一般式与X轴相交与点A、B,与Y轴小于点C,其中点A为(-1,0),点B在X轴的正 2020-08-01 …
线不过坐标原点的原因a-F图线不过a轴原点的原因是:线不过F轴原点的原因是: 2020-08-02 …
中考告急~已知:抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C,其中点A在x轴的负半 2020-12-19 …
椭圆一道选择题(文科)设过点P(X,Y)的直线分别与X轴的正半轴和Y轴的正半轴交于A,B两点,P点关 2020-12-22 …