早教吧作业答案频道 -->其他-->
已知a,b∈R,且ex+1≥ax+b对x∈R恒成立,则ab的最大值是()A.12e3B.22e3C.32e3D.e3
题目详情
已知a,b∈R,且ex+1≥ax+b对x∈R恒成立,则ab的最大值是( )
A.
e3
B.
e3
C.
e3
D.e3
A.
1 |
2 |
B.
| ||
2 |
C.
| ||
2 |
D.e3
▼优质解答
答案和解析
若a<0,由于一次函数y=ax+b单调递减,不能满足且ex+1≥ax+b对x∈R恒成立,则a≥0.
若a=0,则ab=0.
若a>0,由ex+1≥ax+b得b≤ex+1-ax,则ab≤aex+1-a2x.
设函数f(x)=aex+1-a2x,
∴f′(x)=aex+1-a2=a(ex+1-a),令f′(x)=0得ex+1-a=0,解得x=lna-1,
∵x<lna-1时,x+1<lna,则ex+1<a,则ex+1-a<0,∴f′(x)<0,∴函数f(x)递减;
同理,x>lna-1时,f′(x)>0,∴函数f(x)递增;
∴当x=lna-1时,函数取最小值,f(x)的最小值为f(lna-1)=2a2-a2lna.
设g(a)=2a2-a2lna(a>0),
g′(a)=a(3-2lna)(a>0),
由g′(a)=0得a=e
,
不难得到a<e
时,g′(a)>0;a>e
时,g′(a)<0;
∴函数g(a)先增后减,∴g(a)的最大值为g(e
)=
e3,
即ab的最大值是
e3,此时a=e
,b=
e
.
故选:A.
若a=0,则ab=0.
若a>0,由ex+1≥ax+b得b≤ex+1-ax,则ab≤aex+1-a2x.
设函数f(x)=aex+1-a2x,
∴f′(x)=aex+1-a2=a(ex+1-a),令f′(x)=0得ex+1-a=0,解得x=lna-1,
∵x<lna-1时,x+1<lna,则ex+1<a,则ex+1-a<0,∴f′(x)<0,∴函数f(x)递减;
同理,x>lna-1时,f′(x)>0,∴函数f(x)递增;
∴当x=lna-1时,函数取最小值,f(x)的最小值为f(lna-1)=2a2-a2lna.
设g(a)=2a2-a2lna(a>0),
g′(a)=a(3-2lna)(a>0),
由g′(a)=0得a=e
3 |
2 |
不难得到a<e
3 |
2 |
3 |
2 |
∴函数g(a)先增后减,∴g(a)的最大值为g(e
3 |
2 |
1 |
2 |
即ab的最大值是
1 |
2 |
3 |
2 |
1 |
2 |
3 |
2 |
故选:A.
看了已知a,b∈R,且ex+1≥a...的网友还看了以下:
已知a/b=c/d=e/f=2,当b+d≠0时,a+c/b+d=;当b+d+f≠0时,a+c+e/ 2020-05-14 …
已知a,b,c,d,e,f六个数.如果a/b=c/d=e/f(b+d+f≠0),那么a+c+e/b 2020-06-02 …
若a/b=c/d=e/f,则下列各式中正确的是().A.e/f=ac/bdB.e/f=(a+c+e 2020-06-06 …
如图,若AB∥CD,则∠B、∠C、∠E三者之间的关系是()A.∠B+∠C+∠E=180°B.∠B+ 2020-06-12 …
已知函数f(x)=xlnx+et-a,若对任意的t∈[0,1],f(x)在(0,e)上总有唯一的零 2020-06-12 …
(1)如图①∵∠B+∠D+∠1=180°又∵∠1=∠A+∠2∠2=∠C+∠E∴∠A+∠C+∠E+∠ 2020-06-13 …
已知e为自然对数的底数,若对任意的x∈[0,1],总存在唯一的y∈[-1,1],使得x+y2ey- 2020-07-09 …
已知随机变量ξi满足P(ξi=1)=pi,P(ξi=0)=1-pi,i=1,2.若0<p1<p2< 2020-07-21 …
已知e为自然对数的底数,若对任意的x∈[0,1],总存在唯一的y∈[-1,1],使得2x+y2ey 2020-08-02 …
急一道数学题已知a/b=c/d=e/f=m/n(b+d+f+...+n≠0)(1)试说明:a+c+e 2020-11-01 …