设a∈R,函数f(x)=lnx-ax.(1)若a=2,求曲线y=f(x)在x=1处的切线方程;(2)若a<2e2,试判断函数f(x)在x∈(1,e2)的零点个数,并说明你的理由;(3)若f(x)有两个相异零点x1,x2,
设a∈R,函数f(x)=lnx-ax.
(1)若a=2,求曲线y=f(x)在x=1处的切线方程;
(2)若a<,试判断函数f(x)在x∈(1,e2)的零点个数,并说明你的理由;
(3)若f(x)有两个相异零点x1,x2,求证:x1•x2>e2.
答案和解析
在区间(0,+∞)上,
f′(x)=−a=.
(1)当a=2时,切线的斜率k=f′(1)==−1,
又f(1)=ln1-2×1=-2,
由点斜式得切线方程为y-(-2)=-(x-1),即x+y+1=0.
(2)方法一:
(i)当a≤0时,f'(x)≥0,则f(x)在(1,e2)上单调递增,
此时f(1)=-a≥0,∴f(x)在x∈(1,e2)没有零点;
(ii)当a>0时,令f'(x)=0,得x=.
①当0<a≤即≥e2时,则
当x∈(1,e2),有f′(x)≥0,从而f(x)在(1,e2)单调递增,
此时f(1)=-a<0,f(e2)=lne2-ae2=2-ae2>0,
∴f(x)在x∈(1,e2)有且只有一个零点.
②当<a<即<<e2时,则
当x∈(1,)时,f′(x)>0,f(x)在(1,)单调递增;
当x∈(,e2)时,f′(x)<0,f(x)在(,e2)单调递减.
而f()=ln−1>0,f(1)=-a<0,f(e2)=2-ae2>0,
∴f(x)在x∈(1,e2)有且只有一个零点.
综上,当a≤0时,f(x)在x∈(1,e2)没有零点;
当0<a<时,函数f(x)有且只有一个零点.
方法二:由f(x)=0,得a=,
函数f(x)在x∈(1,e2)的零点个数等价于函数y=a的图象与函数y=的图象的交点个数,
令g(x)=,则g′(x)=,
由g'(x)=0,得x=e,
在区间(1,e)上,g'(x)>0,则函数g(x)是增函数,
∴g(1)<g(x)<g(e),即0<g(x)<;
在区间(e,e2)上,g'(x)<0,则函数g(x)是减函数,
∴g(e2)<g(x)<g(e),即<g(x)<.
∵a<,∴当a≤0时,f(x)在x∈(1,e2)没有零点;
当0<a<时,函数f(x)有且只有一个零点.
(3)原不等式x1•x2>e2⇔lnx1+lnx2>2.
不妨设x1>x2>0,∵f(x1)=0,f(x2)=0,∴lnx1-ax1=0,lnx2-ax2=0,
∴lnx1+lnx2=a(x1+x2),lnx1-lnx2=a(x1-x2),
∴a(x1+x2)>2⇔>⇔ln>.
令=t,则t>1,于是ln>⇔lnt>.
设函数h(t)=lnt−(t>1),则h′(t)=−=>0,
故函数h(t)在(1,+∞)上为增函数,∴h(t)>h(1)=0,
即不等式lnt>成立,故所证不等式x1•x2>e2成立.
(1),设g(x)=1+x,且当x≠0时,f(g(x))=(1-x)/x,求f(1/2)(2),f 2020-04-26 …
已知x/(x^2+x+1)=1/4,求分式x^2/(x^4+x^2+1)的值我查到了2种方法啊貌似 2020-05-12 …
解分式方程:1/X-2+1/X-6=1/X-7+1/X-11/X-2+1/X-6=1/X-7+1/ 2020-05-16 …
1.已知函数f(x)满足f(x)+2f(1/x)=2x-1,求f(x)2.设f(x)是定义在R上的 2020-05-23 …
用[x]表示不超过x的最大整数,记{x}=x-[x],其中x∈R,设f(x)=[x]•{x}.用[ 2020-06-04 …
设f(x)在x=a处连续,φ(x)在x=a处间断,又f(a)≠0,则()A.φ[f(x)]在x=a 2020-06-12 …
1.7/x²-1+8/x²-2x=37-9x/x^3-x²-x+12.3/x²+x-2=x/x-1 2020-07-18 …
,关于集合的..设集合M={x|m-4/5≤x≤m},N={x|n≤x≤n+1/4},且M,N都是 2020-07-29 …
1+x+x(x+1)+x(x+1)^2=(1+x)[1+x+x(x+1)]=(1+x)^2(1+x 2020-08-03 …
高数:书上有定义limf(x)/g(x)=1,则f(x)与g(x)是等价无穷小.还有重要极限lims 2020-10-31 …