早教吧作业答案频道 -->其他-->
(2010•黄浦区一模)已知a、b∈R,向量e1=(x,1),e2=(-1,b-x),函数f(x)=a-1e1e2是偶函数.(1)求b的值;(2)若在函数定义域内总存在区间[m,n](m<n),使得y=f(x)在区间[m,n]上
题目详情
(2010•黄浦区一模)已知a、b∈R,向量
=(x,1),
=(-1,b-x),函数f(x)=a-
是偶函数.
(1)求b的值;
(2)若在函数定义域内总存在区间[m,n](m<n),使得y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],求实数a的取值范围.
e1 |
e2 |
1 | ||||
|
(1)求b的值;
(2)若在函数定义域内总存在区间[m,n](m<n),使得y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],求实数a的取值范围.
▼优质解答
答案和解析
解(1)由已知可得,f(x)=a−
,且函数的定义域为D=(−∞,
)∪(
,+∞).
又y=f(x)是偶函数,故定义域D关于原点对称.
于是,b=0.
又对任意x∈D有f(x)=f(-x)
因此所求实数b=0.
(2)由(1)可知,f(x)=a−
(D=(-∞,0)∪(0,+∞).
考察函数f(x)=a−
的图象,可知:f(x)在区间(0,+∞)上增函数.
f(x)在区间(-∞,0)上减函数
因y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],故必有m,n同号.
①当0<m<n时,f(x)在 区间[m,n]上是增函数有
,即方程x=a−
,也就是2x2-2ax+1=0有两个不相等的正实数根,因此
,解得a>
.
②当m<n<0时,f(x)区间[m,n]上是减函数有
1 |
|2x−b| |
b |
2 |
b |
2 |
又y=f(x)是偶函数,故定义域D关于原点对称.
于是,b=0.
又对任意x∈D有f(x)=f(-x)
因此所求实数b=0.
(2)由(1)可知,f(x)=a−
1 |
|2x| |
考察函数f(x)=a−
1 |
|2x| |
f(x)在区间(-∞,0)上减函数
因y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],故必有m,n同号.
①当0<m<n时,f(x)在 区间[m,n]上是增函数有
|
1 |
2x |
|
2 |
②当m<n<0时,f(x)区间[m,n]上是减函数有
作业帮用户
2016-11-19
举报
![]()
举报该用户的提问
举报类型(必填)
举报理由(必填) 0/100
提交
![]() ![]() |
看了(2010•黄浦区一模)已知a...的网友还看了以下:
sinA=√5/5sin(A+B)=-√10/10A,B属于(0,π/2)求B若曲线y=f(x)= 2020-05-20 …
求一个算法设数组A[1..2n]中存放有n个负数和n个正数,且随机存放.现要求按负数正数相间存放. 2020-07-23 …
第一题!定理:若limAn=a,limBn=b,且a>b,则存在自然数N,当n>N时,有An>Bn 2020-07-30 …
下列命题中不正确的是A.任意a,b∈R,an=a*n+b,有{an}是等差数列B.存在a,b∈R, 2020-07-30 …
关于连续的一道高等数学题设函数F(X)在闭区间[a,b]上连续,c,d属于(a,b),m,n>0, 2020-08-01 …
(2010•黄浦区一模)已知a、b∈R,向量e1=(x,1),e2=(-1,b-x),函数f(x)= 2020-10-31 …
(2014•淮安模拟)已知函数f(x)=(x-a)2ex在x=2时取得极小值.(1)求实数a的值;( 2020-11-12 …
若f(x)和g(x)在区间[a,b]上可导,且(g(x)的导数)不等于0.则存在一个nin(a,b) 2020-11-20 …
若f(x)和g(x)在区间[a,b]上可导,且(g(x)的导数)不等于0.则存在一个nin(a,b) 2020-11-20 …
纯净物M、N之间存在着如图所示的转化关系,且反应物和生成物均表示在图示中.单质A和单质B分别由A、B 2021-01-04 …