早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知数列{an}为等差数列,数列{bn}满足bn=an+n,若b2,b5,b11成等比数列,且b3=a6.(1)求an,bn;(2)求数列{1anbn}的前n项和Sn.

题目详情
已知数列{an}为等差数列,数列{bn}满足bn=an+n,若b2,b5,b11成等比数列,且b3=a6
(1)求an,bn
(2)求数列{
1
anbn
}的前n项和Sn
▼优质解答
答案和解析
(1)设数列{an}的公差为d,则an=a1+(n-1)d,bn=a1+(n-1)d+n,
∵b2,b5,b11成等比数列,且b3=a6
a1+2d+3=a1+5d
(a1+4d+5)2=(a1+d+2)(a1+10d+11)

解得
a1=3
d=1

于是an=n+2,bn=2n+2.
(2)
1
anbn
=
1
(n+2)(2n+2)
=
1
2
(
1
n+1
-
1
n+2
).
∴Sn=
1
2
[(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n+1
-
1
n+2
)]
=
1
2
(
1
2
-
1
n+2
)
=
n
4n+8