早教吧作业答案频道 -->其他-->
(2013•浙江模拟)已知在等比数列{an}中,a1=1,且a2是a1和a3-1的等差中项.(1)求数列{an}的通项公式;(2)若数列{bn}满足b1+2b2+3b3+…+nbn=an(n∈N*),求{bn}的通项公式bn.
题目详情
(2013•浙江模拟)已知在等比数列{an}中,a1=1,且a2是a1和a3-1的等差中项.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1+2b2+3b3+…+nbn=an(n∈N*),求{bn}的通项公式bn.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1+2b2+3b3+…+nbn=an(n∈N*),求{bn}的通项公式bn.
▼优质解答
答案和解析
(1)设等比数列{an}的公比为q,由a2是a1和a3-1的等差中项得:
2a2=a1+a3-1,∴2a1q=a1+a1q2−1,
∴2q=q2,∵q≠0,∴q=2,
∴an=2n−1;
(2)n=1时,由b1+2b2+3b3+…+nbn=an,得b1=a1=1.
n≥2时,由b1+2b2+3b3+…+nbn=an ①
b1+2b2+3b3+…+(n-1)bn-1=an-1②
①-②得:nbn=an−an−1=2n−1−2n−2=2n−2.
bn=
,
∴bn=
.
2a2=a1+a3-1,∴2a1q=a1+a1q2−1,
∴2q=q2,∵q≠0,∴q=2,
∴an=2n−1;
(2)n=1时,由b1+2b2+3b3+…+nbn=an,得b1=a1=1.
n≥2时,由b1+2b2+3b3+…+nbn=an ①
b1+2b2+3b3+…+(n-1)bn-1=an-1②
①-②得:nbn=an−an−1=2n−1−2n−2=2n−2.
bn=
2n−2 |
n |
∴bn=
|
看了 (2013•浙江模拟)已知在...的网友还看了以下:
若函数y=a的x次方+b-1(a大于0且a不等于1)的图像经过第三象限,则一定有A.a大于0小于1 2020-04-05 …
浙A浙B浙C浙D浙E浙F浙G浙H浙J浙K浙L浙M浙N浙P浙Q浙R浙S浙T浙U分别代表浙江省的哪些市 2020-04-06 …
以知a=1,b=2求1/ab+1/[a+1][b+1]+1/[a+2][b+2]+.+1/[a+2 2020-04-15 …
已知a,b>0,且a+b=1,求证a分1+b分1大于等于4因为 a>0,b>0 且a+b=1所以 2020-05-15 …
已知f(X)=Lg1-X/1+X,a,b属于(-1,1)求证:f(a)+f(B)=F(A+B)/1 2020-05-22 …
如果有理数a,b满足|ab-2|+|1-b|=0.试求1/ab+1/(a+1)(b+1)+1(a+ 2020-07-09 …
有关矩阵的问题?好像在转置矩阵中,(a*b)'=b'*a';逆矩阵是不是有公式:(a*b)^-1= 2020-07-21 …
已知定义在R上的函数f(x)=log2(ax-b+1)(a>0,a≠1)的图象如图所示,则a,b满 2020-07-22 …
若实数a、b、c满足根号a+根号(b-1)+根号(c-2)=1/2(a+b+c),解这题里(a-2 2020-07-22 …
设a,b,c都是正数且a+b+c=1,求证:(1+a)(1+b)(1+c)≥8(1-a)(1-b) 2020-07-25 …