早教吧作业答案频道 -->其他-->
(2007•丰台区二模)数列{an}、{bn}满足a3=b3=6,a4=b4=4,a5=b5=3,且{an+1-an}(n∈N*)是等差数列,{bn-2}(n∈N*)是等比数列.(I)求数列{an}、{bn}的通项公式;(II)n取何值时,an-bn取到最小正
题目详情
(2007•丰台区二模)数列{an}、{bn}满足a3=b3=6,a4=b4=4,a5=b5=3,且{an+1-an}(n∈N*)是等差数列,{bn-2}(n∈N*)是等比数列.
(I)求数列{an}、{bn}的通项公式;
(II)n取何值时,an-bn取到最小正值?试证明你的结论.
(I)求数列{an}、{bn}的通项公式;
(II)n取何值时,an-bn取到最小正值?试证明你的结论.
▼优质解答
答案和解析
(I)设cn=an+1-an,数列{an+1-an}的公差为d,
则c3=a4-a3=-2,c4=a5-a4=-1,
∴d=c4-c3=1,
∴cn=c3+(n-3)=n-5,
∴an+1-an=n-5
∴(an-an-1)+(an-1-an-2)+…+(a5-a4)+(a4-a3)=(n-6)+(n-7)+…+(-1)+(-2),
∴an-a3=
,
∴an=
n2-
n+18(n∈N*);(4分)
设dn=bn-2,数列{bn-2}的公比是q,则d3=b3-2=4,d4=b4-2=2,
∴q=
=
,
∴dn=d3qn-3=4•(
)n-3=25-n,
∴bn=2+25-n(n∈N*)(7分).
(II)a1-b1=-5,a2-b2=-1,a3-b3=a4-b4=a5-b5=0,
a6-b6=
,a7-b7=
>
,
猜想:n=6时,a6-b6取到最小正值.(9分)
下面用数学归纳法给以证明:
(1)当n=7时,a7-b7=
>
;
(2)假设n=k(k≥7,k∈N*)时,ak-bk>
,
当n=k+1时,ak+1=
(k+1)2-
(k+1)+18=(
k2-
k+18)+k-5
=ak+k-5>bk+
+k-5>bk+1+
+k-5,
又∵k≥7,∴ak+1>bK+1+
,
即ak+1-bK+1>
则c3=a4-a3=-2,c4=a5-a4=-1,
∴d=c4-c3=1,
∴cn=c3+(n-3)=n-5,
∴an+1-an=n-5
∴(an-an-1)+(an-1-an-2)+…+(a5-a4)+(a4-a3)=(n-6)+(n-7)+…+(-1)+(-2),
∴an-a3=
(n-3)(n-8) |
2 |
∴an=
1 |
2 |
11 |
2 |
设dn=bn-2,数列{bn-2}的公比是q,则d3=b3-2=4,d4=b4-2=2,
∴q=
d4 |
d3 |
1 |
2 |
∴dn=d3qn-3=4•(
1 |
2 |
∴bn=2+25-n(n∈N*)(7分).
(II)a1-b1=-5,a2-b2=-1,a3-b3=a4-b4=a5-b5=0,
a6-b6=
1 |
2 |
7 |
4 |
1 |
2 |
猜想:n=6时,a6-b6取到最小正值.(9分)
下面用数学归纳法给以证明:
(1)当n=7时,a7-b7=
7 |
4 |
1 |
2 |
(2)假设n=k(k≥7,k∈N*)时,ak-bk>
1 |
2 |
当n=k+1时,ak+1=
1 |
2 |
11 |
2 |
1 |
2 |
11 |
2 |
=ak+k-5>bk+
1 |
2 |
1 |
2 |
又∵k≥7,∴ak+1>bK+1+
1 |
2 |
即ak+1-bK+1>
看了(2007•丰台区二模)数列{...的网友还看了以下:
1.已知数列{An}满足{An/n}是公差为1,的等差数列,且An+1=(n+2/n)·An+1( 2020-04-09 …
已知函数f(x)=x/(2*x+1),数列{an}满足a[1]=1/2,a[n+1]=f(a[n] 2020-05-13 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
数列an满足a1=1,n乘以an+1=(n+1),an+n乘以(n+1)(1)证明数列an/n是等 2020-07-10 …
数列an的前n项和为Sn,若a1=3,点(Sn,Sn+1)在直线y=(n+1)x/n+n+1上,求 2020-07-11 …
已知数列{an}中,a1=2,a2=6,且数列{an-1-an}{n∈N*}是公差为2的等差数列. 2020-07-21 …
已知数列an满足a1=1,an-2a下标(n-1)-2*(n-1)=0,(n∈N*,n≥2)(1) 2020-07-29 …
是否寻在数列{an},同时满足下列条件:(1){an}是等差数列(2)数列{1/an}也是等差数列 2020-07-30 …
高中等差数列数列{an}满足递推公式an=3an-1+(3*n)-1(n≥2),又a1=5,则使得 2020-08-01 …
已知数列{a[n]}的前n项和为S[n],且满足a[n]+2S[n]×S[n-1]=0(n≥0),a 2020-11-01 …