早教吧 育儿知识 作业答案 考试题库 百科 知识分享

观察下面几个等式(a-b)(a+b)=a2-b2(a-b)(a2+ab+b2)=a3-b3(a-b)(a3+a2b+ab2+b3)=a4-b4(a-b)(a4+a3b+a2b2+ab3+b4)=a5-b5可得到猜想:an-bn=(n∈N+,N≥2).

题目详情
观察下面几个等式(a-b)(a+b)=a2-b2(a-b)(a2+ab+b2)=a3-b3(a-b)(a3+a2b+ab2+b3)=a4-b4(a-b)(a4+a3b+a2b2+ab3+b4)=a5-b5可得到猜想:an-bn=______(n∈N+,N≥2).
▼优质解答
答案和解析
由题意,当n=1时,有(a-b)(a+b)=a2-b2
当n=2时,有(a-b)(a2+ab+b2)=a3-b3
当n=3时,有(a-b)(a3+a2b+ab2+b3)=a4-b4
当n=4时,有(a-b)(a4+a3b+a2b2+ab3+b4)=a5-b5
所以得到猜想:当n∈N*时,有(a-b)(an+an-1b+…+ab