早教吧作业答案频道 -->其他-->
数列{an}满足a1=1且8an+1an-16an+1+2an+5=0(n≥1).记bn=1an−12(n≥1).(Ⅰ)求b1、b2、b3、b4的值;(Ⅱ)求数列{bn}的通项公式及数列{anbn}的前n项和Sn.
题目详情
数列{an}满足a1=1且8an+1an-16an+1+2an+5=0(n≥1).记bn=
(n≥1).
(Ⅰ)求b1、b2、b3、b4的值;
(Ⅱ)求数列{bn}的通项公式及数列{anbn}的前n项和Sn.
1 | ||
an−
|
(Ⅰ)求b1、b2、b3、b4的值;
(Ⅱ)求数列{bn}的通项公式及数列{anbn}的前n项和Sn.
▼优质解答
答案和解析
法一:
(I)a1=1,故b1=
=2;a2=
,
故b2=
=
;a3=
,
故b3=
=4;a4=
,
故b4=
.
(II)因(b1−
)(b3−
)=
×
=(
)2,(b2−
)2=(
)2,(b1−
)(b3−
)=(b2−
)2
故猜想{bn−
}是首项为
,公比q=2的等比数列.
因an≠2,(否则将an=2代入递推公式会导致矛盾)故an+1=
(n≥1).
因bn+1−
=
−
=
−
=
,
2(bn−
)=
−
=
=bn+1−
,b1−
≠0,
故|bn−
|确是公比为q=2的等比数列.
因b1−
=
,故bn−
=
•2n,bn=
•2n+
(n≥1),
由bn=
得anbn=
bn+1,
故Sn=a1b1+a2b2+…+anbn=
(b1+b2++bn)+n=
+
n=
(2n+5n−1)
法二:
(Ⅰ)由bn=
得an=
+
,代入递推关系8an+1an-16an+1+2an+5=0,
整理得
−
+
=0,即bn+1=2bn−
,
由a1=1,有b1=2,所以b2=
,b3=4,b4=
.
(Ⅱ)由bn+1=2bn−
,bn+1−
=2(bn−
),b1−
=
≠0,
所以{bn−
}是首项为
,公比q=2的等比数列,
故bn−
=
•2n,即bn=
•2n+
(n≥1).
由bn=
,得anbn=
bn+1,
故Sn=a1b1+a2b2+…+anbn=
(b1+b2++bn)+n=
+
n=
(2n+5n−1).
法三:
(Ⅰ)同解法一
(Ⅱ)b2−b1=
,b3−b2=
,b4−b3=
,
×
=(
)2猜想{bn+1-bn}是首项为
,
公比q=2的等比数列,bn+1−bn=
•2n
又因an≠2,故an+1=
(n≥1).
因此bn+1−bn=
−
=
−
=
−
=
;
bn+2−bn+1=
−
=
−
=
−
=
=2(bn+1−bn).
因b2−b1=
≠0,{bn+1−bn}是公比q=2的等比数列,bn+1−bn=
•2n,
从而bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=
(2n−1+2n−2++21)+2
=
(2n−2)+2
=
•2n+
(n≥1).
由bn=
得anbn=
bn+1,
故Sn=a1b1+a2b2+…+anbn=
(b1+b2++bn)+n=
+
n=
(2n+5n−1).
(I)a1=1,故b1=
1 | ||
1−
|
7 |
8 |
故b2=
1 | ||||
|
8 |
3 |
3 |
4 |
故b3=
1 | ||||
|
13 |
20 |
故b4=
20 |
3 |
(II)因(b1−
4 |
3 |
4 |
3 |
2 |
3 |
8 |
3 |
4 |
3 |
4 |
3 |
4 |
3 |
4 |
3 |
4 |
3 |
4 |
3 |
故猜想{bn−
4 |
3 |
2 |
3 |
因an≠2,(否则将an=2代入递推公式会导致矛盾)故an+1=
5+2a |
16−8an |
因bn+1−
4 |
3 |
1 | ||
an+1−
|
4 |
3 |
16−8an |
6an−3 |
4 |
3 |
20−16an |
6an−3 |
2(bn−
4 |
3 |
2 | ||
an−
|
8 |
3 |
20−16an |
6an−3 |
4 |
3 |
4 |
3 |
故|bn−
4 |
3 |
因b1−
4 |
3 |
2 |
3 |
4 |
3 |
1 |
3 |
1 |
3 |
4 |
3 |
由bn=
1 | ||
an−
|
1 |
2 |
故Sn=a1b1+a2b2+…+anbn=
1 |
2 |
| ||
1−2 |
5 |
3 |
1 |
3 |
法二:
(Ⅰ)由bn=
1 | ||
an−
|
1 |
bn |
1 |
2 |
整理得
4 |
bn+1bn |
6 |
bn+1 |
3 |
bn |
4 |
3 |
由a1=1,有b1=2,所以b2=
8 |
3 |
20 |
3 |
(Ⅱ)由bn+1=2bn−
4 |
3 |
4 |
3 |
4 |
3 |
4 |
3 |
2 |
3 |
所以{bn−
4 |
3 |
2 |
3 |
故bn−
4 |
3 |
1 |
3 |
1 |
3 |
4 |
3 |
由bn=
1 | ||
an−
|
1 |
2 |
故Sn=a1b1+a2b2+…+anbn=
1 |
2 |
| ||
1−2 |
5 |
3 |
1 |
3 |
法三:
(Ⅰ)同解法一
(Ⅱ)b2−b1=
2 |
3 |
4 |
3 |
8 |
3 |
2 |
3 |
8 |
3 |
4 |
3 |
2 |
3 |
公比q=2的等比数列,bn+1−bn=
1 |
3 |
又因an≠2,故an+1=
5+2an |
16−8an |
因此bn+1−bn=
1 | ||
an+1−
|
1 | ||
an−
|
1 | ||||
|
2 |
2an−1 |
16−8an |
6an−3 |
6 |
6an−3 |
10−8an |
6an−3 |
bn+2−bn+1=
1 | ||
an+2−
|
1 | ||
an+1−
|
16−8an+1 |
6an+1−3 |
16−8an |
6an−3 |
36−24an |
6an−3 |
16−8an |
6an−3 |
20−16an |
6an−3 |
因b2−b1=
2 |
3 |
1 |
3 |
从而bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=
1 |
3 |
=
1 |
3 |
=
1 |
3 |
4 |
3 |
由bn=
1 | ||
an−
|
1 |
2 |
故Sn=a1b1+a2b2+…+anbn=
1 |
2 |
| ||
1−2 |
5 |
3 |
1 |
3 |
看了数列{an}满足a1=1且8a...的网友还看了以下:
设{an}是首项为1的正项数列,且(n+1)*[a(n+1)]^2-n*(an)^2+a(n+1) 2020-04-09 …
分式的加减m/m^2-n^2-n/m^2-n^2a^2/a^2-b^2-a^2/b^2+2ab/a 2020-05-13 …
利用提公因式法解:6(m-n)^3-12(m-n)^2和2(a-b)^3-4(b-a)^2要详细的 2020-05-13 …
1.公差不为零的等差数列的第2、3、6项构成等比数列,则公比为?2.二次方程a(n) x^2-a( 2020-05-13 …
如:1+2+3+...+n=n(n+1)/2;a选b的组合数为(a(a-1)(a-2)...(a- 2020-05-14 …
用单调有界数列收敛准则证明数列极限存在.(1)X1>0,Xn+1=1/2(Xn+a/Xn)(n=1 2020-05-16 …
已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=((n+1)/2)a(n+1)(n 2020-05-16 …
已知无穷数列an,首项a1=3,其前n项和为Sn已知无穷数列{an},首项a1=3,其前n项和为S 2020-07-09 …
立方差公式的推广证明过程(1)a^n-b^n=(a-b)[a^(n-1)+a^(n-2)*b+.. 2020-07-11 …
(证明自己数学实力)非常有挑战的数列极限即a(n)=sqrt(2+sqrt(2+sqrt(2+…s 2020-08-02 …