早教吧作业答案频道 -->其他-->
数列{an}满足a1=1且8an+1an-16an+1+2an+5=0(n≥1).记bn=1an−12(n≥1).(Ⅰ)求b1、b2、b3、b4的值;(Ⅱ)求数列{bn}的通项公式及数列{anbn}的前n项和Sn.
题目详情
数列{an}满足a1=1且8an+1an-16an+1+2an+5=0(n≥1).记bn=
(n≥1).
(Ⅰ)求b1、b2、b3、b4的值;
(Ⅱ)求数列{bn}的通项公式及数列{anbn}的前n项和Sn.
| 1 | ||
an−
|
(Ⅰ)求b1、b2、b3、b4的值;
(Ⅱ)求数列{bn}的通项公式及数列{anbn}的前n项和Sn.
▼优质解答
答案和解析
法一:
(I)a1=1,故b1=
=2;a2=
,
故b2=
=
;a3=
,
故b3=
=4;a4=
,
故b4=
.
(II)因(b1−
)(b3−
)=
×
=(
)2,(b2−
)2=(
)2,(b1−
)(b3−
)=(b2−
)2
故猜想{bn−
}是首项为
,公比q=2的等比数列.
因an≠2,(否则将an=2代入递推公式会导致矛盾)故an+1=
(n≥1).
因bn+1−
=
−
=
−
=
,
2(bn−
)=
−
=
=bn+1−
,b1−
≠0,
故|bn−
|确是公比为q=2的等比数列.
因b1−
=
,故bn−
=
•2n,bn=
•2n+
(n≥1),
由bn=
得anbn=
bn+1,
故Sn=a1b1+a2b2+…+anbn=
(b1+b2++bn)+n=
+
n=
(2n+5n−1)
法二:
(Ⅰ)由bn=
得an=
+
,代入递推关系8an+1an-16an+1+2an+5=0,
整理得
−
+
=0,即bn+1=2bn−
,
由a1=1,有b1=2,所以b2=
,b3=4,b4=
.
(Ⅱ)由bn+1=2bn−
,bn+1−
=2(bn−
),b1−
=
≠0,
所以{bn−
}是首项为
,公比q=2的等比数列,
故bn−
=
•2n,即bn=
•2n+
(n≥1).
由bn=
,得anbn=
bn+1,
故Sn=a1b1+a2b2+…+anbn=
(b1+b2++bn)+n=
+
n=
(2n+5n−1).
法三:
(Ⅰ)同解法一
(Ⅱ)b2−b1=
,b3−b2=
,b4−b3=
,
×
=(
)2猜想{bn+1-bn}是首项为
,
公比q=2的等比数列,bn+1−bn=
•2n
又因an≠2,故an+1=
(n≥1).
因此bn+1−bn=
−
=
−
=
−
=
;
bn+2−bn+1=
−
=
−
=
−
=
=2(bn+1−bn).
因b2−b1=
≠0,{bn+1−bn}是公比q=2的等比数列,bn+1−bn=
•2n,
从而bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=
(2n−1+2n−2++21)+2
=
(2n−2)+2
=
•2n+
(n≥1).
由bn=
得anbn=
bn+1,
故Sn=a1b1+a2b2+…+anbn=
(b1+b2++bn)+n=
+
n=
(2n+5n−1).
(I)a1=1,故b1=
| 1 | ||
1−
|
| 7 |
| 8 |
故b2=
| 1 | ||||
|
| 8 |
| 3 |
| 3 |
| 4 |
故b3=
| 1 | ||||
|
| 13 |
| 20 |
故b4=
| 20 |
| 3 |
(II)因(b1−
| 4 |
| 3 |
| 4 |
| 3 |
| 2 |
| 3 |
| 8 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
故猜想{bn−
| 4 |
| 3 |
| 2 |
| 3 |
因an≠2,(否则将an=2代入递推公式会导致矛盾)故an+1=
| 5+2a |
| 16−8an |
因bn+1−
| 4 |
| 3 |
| 1 | ||
an+1−
|
| 4 |
| 3 |
| 16−8an |
| 6an−3 |
| 4 |
| 3 |
| 20−16an |
| 6an−3 |
2(bn−
| 4 |
| 3 |
| 2 | ||
an−
|
| 8 |
| 3 |
| 20−16an |
| 6an−3 |
| 4 |
| 3 |
| 4 |
| 3 |
故|bn−
| 4 |
| 3 |
因b1−
| 4 |
| 3 |
| 2 |
| 3 |
| 4 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 4 |
| 3 |
由bn=
| 1 | ||
an−
|
| 1 |
| 2 |
故Sn=a1b1+a2b2+…+anbn=
| 1 |
| 2 |
| ||
| 1−2 |
| 5 |
| 3 |
| 1 |
| 3 |
法二:
(Ⅰ)由bn=
| 1 | ||
an−
|
| 1 |
| bn |
| 1 |
| 2 |
整理得
| 4 |
| bn+1bn |
| 6 |
| bn+1 |
| 3 |
| bn |
| 4 |
| 3 |
由a1=1,有b1=2,所以b2=
| 8 |
| 3 |
| 20 |
| 3 |
(Ⅱ)由bn+1=2bn−
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 2 |
| 3 |
所以{bn−
| 4 |
| 3 |
| 2 |
| 3 |
故bn−
| 4 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 4 |
| 3 |
由bn=
| 1 | ||
an−
|
| 1 |
| 2 |
故Sn=a1b1+a2b2+…+anbn=
| 1 |
| 2 |
| ||
| 1−2 |
| 5 |
| 3 |
| 1 |
| 3 |
法三:
(Ⅰ)同解法一
(Ⅱ)b2−b1=
| 2 |
| 3 |
| 4 |
| 3 |
| 8 |
| 3 |
| 2 |
| 3 |
| 8 |
| 3 |
| 4 |
| 3 |
| 2 |
| 3 |
公比q=2的等比数列,bn+1−bn=
| 1 |
| 3 |
又因an≠2,故an+1=
| 5+2an |
| 16−8an |
因此bn+1−bn=
| 1 | ||
an+1−
|
| 1 | ||
an−
|
| 1 | ||||
|
| 2 |
| 2an−1 |
| 16−8an |
| 6an−3 |
| 6 |
| 6an−3 |
| 10−8an |
| 6an−3 |
bn+2−bn+1=
| 1 | ||
an+2−
|
| 1 | ||
an+1−
|
| 16−8an+1 |
| 6an+1−3 |
| 16−8an |
| 6an−3 |
| 36−24an |
| 6an−3 |
| 16−8an |
| 6an−3 |
| 20−16an |
| 6an−3 |
因b2−b1=
| 2 |
| 3 |
| 1 |
| 3 |
从而bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=
| 1 |
| 3 |
=
| 1 |
| 3 |
=
| 1 |
| 3 |
| 4 |
| 3 |
由bn=
| 1 | ||
an−
|
| 1 |
| 2 |
故Sn=a1b1+a2b2+…+anbn=
| 1 |
| 2 |
| ||
| 1−2 |
| 5 |
| 3 |
| 1 |
| 3 |
看了数列{an}满足a1=1且8a...的网友还看了以下:
已知数列{an}的递推公式为a1=2an+1=3an+1,bn=an+12(n∈N*),(1)求证: 2020-03-30 …
7.把抛物线y=x+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x- 2020-04-27 …
下列条件能判定△ABC与△A'B'C'相似的有( )(1)∠A=45°,AB=12,AC=15,∠ 2020-05-16 …
平面向量练习题2.下列命题中:①若a与b互为负向量,则a+b=0;②若k为实数,且k•a=0,则a 2020-05-16 …
计算机数制转换进行下列数的数制转换.⑴(213)D=()B=()H=()O⑵(69.625)D=( 2020-07-19 …
设A.B是非空集合,定义A×B={X|X∈A∪B,且X不属于A∩B}.已知A={y|y=√3+2设 2020-08-01 …
给出下列等式:(ⅰ)an+1-an=p(p为常数);(ⅱ)2an+1=an+an+2(n∈N*); 2020-08-02 …
四元一次方程设ABCD(ABCD为>1补充ABCD可以是相同的数字例如1.A+B+C+D=4A=B= 2020-11-03 …
(2014•防城港二模)设Sn为数列{an}的前n项和,已知2an−1=Sn,n∈N*.(Ⅰ)求数列 2020-11-13 …
下列推论有错误的是:()1.若a:b=c:d,则a:c=b:d2.若ad=bc,则有d:c=b:a3 2020-12-23 …