早教吧作业答案频道 -->其他-->
数列{an}满足a1=1且8an+1an-16an+1+2an+5=0(n≥1).记bn=1an−12(n≥1).(Ⅰ)求b1、b2、b3、b4的值;(Ⅱ)求数列{bn}的通项公式及数列{anbn}的前n项和Sn.
题目详情
数列{an}满足a1=1且8an+1an-16an+1+2an+5=0(n≥1).记bn=
(n≥1).
(Ⅰ)求b1、b2、b3、b4的值;
(Ⅱ)求数列{bn}的通项公式及数列{anbn}的前n项和Sn.
1 | ||
an−
|
(Ⅰ)求b1、b2、b3、b4的值;
(Ⅱ)求数列{bn}的通项公式及数列{anbn}的前n项和Sn.
▼优质解答
答案和解析
法一:
(I)a1=1,故b1=
=2;a2=
,
故b2=
=
;a3=
,
故b3=
=4;a4=
,
故b4=
.
(II)因(b1−
)(b3−
)=
×
=(
)2,(b2−
)2=(
)2,(b1−
)(b3−
)=(b2−
)2
故猜想{bn−
}是首项为
,公比q=2的等比数列.
因an≠2,(否则将an=2代入递推公式会导致矛盾)故an+1=
(n≥1).
因bn+1−
=
−
=
−
=
,
2(bn−
)=
−
=
=bn+1−
,b1−
≠0,
故|bn−
|确是公比为q=2的等比数列.
因b1−
=
,故bn−
=
•2n,bn=
•2n+
(n≥1),
由bn=
得anbn=
bn+1,
故Sn=a1b1+a2b2+…+anbn=
(b1+b2++bn)+n=
+
n=
(2n+5n−1)
法二:
(Ⅰ)由bn=
得an=
+
,代入递推关系8an+1an-16an+1+2an+5=0,
整理得
−
+
=0,即bn+1=2bn−
,
由a1=1,有b1=2,所以b2=
,b3=4,b4=
.
(Ⅱ)由bn+1=2bn−
,bn+1−
=2(bn−
),b1−
=
≠0,
所以{bn−
}是首项为
,公比q=2的等比数列,
故bn−
=
•2n,即bn=
•2n+
(n≥1).
由bn=
,得anbn=
bn+1,
故Sn=a1b1+a2b2+…+anbn=
(b1+b2++bn)+n=
+
n=
(2n+5n−1).
法三:
(Ⅰ)同解法一
(Ⅱ)b2−b1=
,b3−b2=
,b4−b3=
,
×
=(
)2猜想{bn+1-bn}是首项为
,
公比q=2的等比数列,bn+1−bn=
•2n
又因an≠2,故an+1=
(n≥1).
因此bn+1−bn=
−
=
−
=
−
=
;
bn+2−bn+1=
−
=
−
=
−
=
=2(bn+1−bn).
因b2−b1=
≠0,{bn+1−bn}是公比q=2的等比数列,bn+1−bn=
•2n,
从而bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=
(2n−1+2n−2++21)+2
=
(2n−2)+2
=
•2n+
(n≥1).
由bn=
得anbn=
bn+1,
故Sn=a1b1+a2b2+…+anbn=
(b1+b2++bn)+n=
+
n=
(2n+5n−1).
(I)a1=1,故b1=
1 | ||
1−
|
7 |
8 |
故b2=
1 | ||||
|
8 |
3 |
3 |
4 |
故b3=
1 | ||||
|
13 |
20 |
故b4=
20 |
3 |
(II)因(b1−
4 |
3 |
4 |
3 |
2 |
3 |
8 |
3 |
4 |
3 |
4 |
3 |
4 |
3 |
4 |
3 |
4 |
3 |
4 |
3 |
故猜想{bn−
4 |
3 |
2 |
3 |
因an≠2,(否则将an=2代入递推公式会导致矛盾)故an+1=
5+2a |
16−8an |
因bn+1−
4 |
3 |
1 | ||
an+1−
|
4 |
3 |
16−8an |
6an−3 |
4 |
3 |
20−16an |
6an−3 |
2(bn−
4 |
3 |
2 | ||
an−
|
8 |
3 |
20−16an |
6an−3 |
4 |
3 |
4 |
3 |
故|bn−
4 |
3 |
因b1−
4 |
3 |
2 |
3 |
4 |
3 |
1 |
3 |
1 |
3 |
4 |
3 |
由bn=
1 | ||
an−
|
1 |
2 |
故Sn=a1b1+a2b2+…+anbn=
1 |
2 |
| ||
1−2 |
5 |
3 |
1 |
3 |
法二:
(Ⅰ)由bn=
1 | ||
an−
|
1 |
bn |
1 |
2 |
整理得
4 |
bn+1bn |
6 |
bn+1 |
3 |
bn |
4 |
3 |
由a1=1,有b1=2,所以b2=
8 |
3 |
20 |
3 |
(Ⅱ)由bn+1=2bn−
4 |
3 |
4 |
3 |
4 |
3 |
4 |
3 |
2 |
3 |
所以{bn−
4 |
3 |
2 |
3 |
故bn−
4 |
3 |
1 |
3 |
1 |
3 |
4 |
3 |
由bn=
1 | ||
an−
|
1 |
2 |
故Sn=a1b1+a2b2+…+anbn=
1 |
2 |
| ||
1−2 |
5 |
3 |
1 |
3 |
法三:
(Ⅰ)同解法一
(Ⅱ)b2−b1=
2 |
3 |
4 |
3 |
8 |
3 |
2 |
3 |
8 |
3 |
4 |
3 |
2 |
3 |
公比q=2的等比数列,bn+1−bn=
1 |
3 |
又因an≠2,故an+1=
5+2an |
16−8an |
因此bn+1−bn=
1 | ||
an+1−
|
1 | ||
an−
|
1 | ||||
|
2 |
2an−1 |
16−8an |
6an−3 |
6 |
6an−3 |
10−8an |
6an−3 |
bn+2−bn+1=
1 | ||
an+2−
|
1 | ||
an+1−
|
16−8an+1 |
6an+1−3 |
16−8an |
6an−3 |
36−24an |
6an−3 |
16−8an |
6an−3 |
20−16an |
6an−3 |
因b2−b1=
2 |
3 |
1 |
3 |
从而bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=
1 |
3 |
=
1 |
3 |
=
1 |
3 |
4 |
3 |
由bn=
1 | ||
an−
|
1 |
2 |
故Sn=a1b1+a2b2+…+anbn=
1 |
2 |
| ||
1−2 |
5 |
3 |
1 |
3 |
看了数列{an}满足a1=1且8a...的网友还看了以下:
已知函数f(x)=x/(2*x+1),数列{an}满足a[1]=1/2,a[n+1]=f(a[n] 2020-05-13 …
1.已知数列{an}中,a(1)=1,a(2)=6,a(n+2)=a(n+1)-a(n),则a(2 2020-05-14 …
在数列{an}中,a1=1,且对任意K∈N*,a(2k-1),a(2k),a(2k+1)成等比数列 2020-05-23 …
求数列1a^1+2a^2+3a^3+4a^4+∞a^∞的和如题当a=2的时候,数列的和为2;当a= 2020-06-12 …
已知数列an满足a1=7/3,a(n+1)=3a(n)-4n+2(1)求a2,a3的值(2)证明数 2020-07-09 …
在数列{an}中,设S1=a1+a2+……an,s2=a(n+1).在数列{an}中,设S1=a1 2020-07-09 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
1.已知数列(an)满足a1=1/5,且当n≥2时,有a[n-1]/a[n]=(2a[n-1]+1 2020-07-30 …
用辅助数列法解等差数列题也就是要用递推公式推出来,用辅助数列法1、已知数列{an}的首项a(1)= 2020-08-01 …
已知数列{An}满足A1=a,A(n+1)=1+1/An,我们知道当a取不同的值时高考数列问题求解 2020-08-02 …