早教吧作业答案频道 -->其他-->
数列{an}满足a1=1且8an+1an-16an+1+2an+5=0(n≥1).记bn=1an−12(n≥1).(Ⅰ)求b1、b2、b3、b4的值;(Ⅱ)求数列{bn}的通项公式及数列{anbn}的前n项和Sn.
题目详情
数列{an}满足a1=1且8an+1an-16an+1+2an+5=0(n≥1).记bn=
(n≥1).
(Ⅰ)求b1、b2、b3、b4的值;
(Ⅱ)求数列{bn}的通项公式及数列{anbn}的前n项和Sn.
| 1 | ||
an−
  | 
(Ⅰ)求b1、b2、b3、b4的值;
(Ⅱ)求数列{bn}的通项公式及数列{anbn}的前n项和Sn.
▼优质解答
答案和解析
法一:
(I)a1=1,故b1=
=2;a2=
,
故b2=
=
;a3=
,
故b3=
=4;a4=
,
故b4=
.
(II)因(b1−
)(b3−
)=
×
=(
)2,(b2−
)2=(
)2,(b1−
)(b3−
)=(b2−
)2
故猜想{bn−
}是首项为
,公比q=2的等比数列.
因an≠2,(否则将an=2代入递推公式会导致矛盾)故an+1=
(n≥1).
因bn+1−
=
−
=
−
=
,
2(bn−
)=
−
=
=bn+1−
,b1−
≠0,
故|bn−
|确是公比为q=2的等比数列.
因b1−
=
,故bn−
=
•2n,bn=
•2n+
(n≥1),
由bn=
得anbn=
bn+1,
故Sn=a1b1+a2b2+…+anbn=
(b1+b2++bn)+n=
+
n=
(2n+5n−1)
法二:
(Ⅰ)由bn=
得an=
+
,代入递推关系8an+1an-16an+1+2an+5=0,
整理得
−
+
=0,即bn+1=2bn−
,
由a1=1,有b1=2,所以b2=
,b3=4,b4=
.
(Ⅱ)由bn+1=2bn−
,bn+1−
=2(bn−
),b1−
=
≠0,
所以{bn−
}是首项为
,公比q=2的等比数列,
故bn−
=
•2n,即bn=
•2n+
(n≥1).
由bn=
,得anbn=
bn+1,
故Sn=a1b1+a2b2+…+anbn=
(b1+b2++bn)+n=
+
n=
(2n+5n−1).
法三:
(Ⅰ)同解法一
(Ⅱ)b2−b1=
,b3−b2=
,b4−b3=
,
×
=(
)2猜想{bn+1-bn}是首项为
,
公比q=2的等比数列,bn+1−bn=
•2n
又因an≠2,故an+1=
(n≥1).
因此bn+1−bn=
−
=
−
=
−
=
;
bn+2−bn+1=
−
=
−
=
−
=
=2(bn+1−bn).
因b2−b1=
≠0,{bn+1−bn}是公比q=2的等比数列,bn+1−bn=
•2n,
从而bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=
(2n−1+2n−2++21)+2
=
(2n−2)+2
=
•2n+
(n≥1).
由bn=
得anbn=
bn+1,
故Sn=a1b1+a2b2+…+anbn=
(b1+b2++bn)+n=
+
n=
(2n+5n−1).                    
(I)a1=1,故b1=
| 1 | ||
1−
  | 
| 7 | 
| 8 | 
故b2=
| 1 | ||||
 
  | 
| 8 | 
| 3 | 
| 3 | 
| 4 | 
故b3=
| 1 | ||||
 
  | 
| 13 | 
| 20 | 
故b4=
| 20 | 
| 3 | 
(II)因(b1−
| 4 | 
| 3 | 
| 4 | 
| 3 | 
| 2 | 
| 3 | 
| 8 | 
| 3 | 
| 4 | 
| 3 | 
| 4 | 
| 3 | 
| 4 | 
| 3 | 
| 4 | 
| 3 | 
| 4 | 
| 3 | 
| 4 | 
| 3 | 
故猜想{bn−
| 4 | 
| 3 | 
| 2 | 
| 3 | 
因an≠2,(否则将an=2代入递推公式会导致矛盾)故an+1=
| 5+2a | 
| 16−8an | 
因bn+1−
| 4 | 
| 3 | 
| 1 | ||
an+1−
  | 
| 4 | 
| 3 | 
| 16−8an | 
| 6an−3 | 
| 4 | 
| 3 | 
| 20−16an | 
| 6an−3 | 
2(bn−
| 4 | 
| 3 | 
| 2 | ||
an−
  | 
| 8 | 
| 3 | 
| 20−16an | 
| 6an−3 | 
| 4 | 
| 3 | 
| 4 | 
| 3 | 
故|bn−
| 4 | 
| 3 | 
因b1−
| 4 | 
| 3 | 
| 2 | 
| 3 | 
| 4 | 
| 3 | 
| 1 | 
| 3 | 
| 1 | 
| 3 | 
| 4 | 
| 3 | 
由bn=
| 1 | ||
an−
  | 
| 1 | 
| 2 | 
故Sn=a1b1+a2b2+…+anbn=
| 1 | 
| 2 | 
  | ||
| 1−2 | 
| 5 | 
| 3 | 
| 1 | 
| 3 | 
法二:
(Ⅰ)由bn=
| 1 | ||
an−
  | 
| 1 | 
| bn | 
| 1 | 
| 2 | 
整理得
| 4 | 
| bn+1bn | 
| 6 | 
| bn+1 | 
| 3 | 
| bn | 
| 4 | 
| 3 | 
由a1=1,有b1=2,所以b2=
| 8 | 
| 3 | 
| 20 | 
| 3 | 
(Ⅱ)由bn+1=2bn−
| 4 | 
| 3 | 
| 4 | 
| 3 | 
| 4 | 
| 3 | 
| 4 | 
| 3 | 
| 2 | 
| 3 | 
所以{bn−
| 4 | 
| 3 | 
| 2 | 
| 3 | 
故bn−
| 4 | 
| 3 | 
| 1 | 
| 3 | 
| 1 | 
| 3 | 
| 4 | 
| 3 | 
由bn=
| 1 | ||
an−
  | 
| 1 | 
| 2 | 
故Sn=a1b1+a2b2+…+anbn=
| 1 | 
| 2 | 
  | ||
| 1−2 | 
| 5 | 
| 3 | 
| 1 | 
| 3 | 
法三:
(Ⅰ)同解法一
(Ⅱ)b2−b1=
| 2 | 
| 3 | 
| 4 | 
| 3 | 
| 8 | 
| 3 | 
| 2 | 
| 3 | 
| 8 | 
| 3 | 
| 4 | 
| 3 | 
| 2 | 
| 3 | 
公比q=2的等比数列,bn+1−bn=
| 1 | 
| 3 | 
又因an≠2,故an+1=
| 5+2an | 
| 16−8an | 
因此bn+1−bn=
| 1 | ||
an+1−
  | 
| 1 | ||
an−
  | 
| 1 | ||||
 
  | 
| 2 | 
| 2an−1 | 
| 16−8an | 
| 6an−3 | 
| 6 | 
| 6an−3 | 
| 10−8an | 
| 6an−3 | 
bn+2−bn+1=
| 1 | ||
an+2−
  | 
| 1 | ||
an+1−
  | 
| 16−8an+1 | 
| 6an+1−3 | 
| 16−8an | 
| 6an−3 | 
| 36−24an | 
| 6an−3 | 
| 16−8an | 
| 6an−3 | 
| 20−16an | 
| 6an−3 | 
因b2−b1=
| 2 | 
| 3 | 
| 1 | 
| 3 | 
从而bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=
| 1 | 
| 3 | 
=
| 1 | 
| 3 | 
=
| 1 | 
| 3 | 
| 4 | 
| 3 | 
由bn=
| 1 | ||
an−
  | 
| 1 | 
| 2 | 
故Sn=a1b1+a2b2+…+anbn=
| 1 | 
| 2 | 
  | ||
| 1−2 | 
| 5 | 
| 3 | 
| 1 | 
| 3 | 
 看了数列{an}满足a1=1且8a...的网友还看了以下:
正整数n(n>1)的三次方分解为m个连续奇数之和,n是质数的时候只有一种吗?正整数n,n是质数的时 2020-04-10 …
求数学高人给出该数列题的解法(尽可能简便)已知数列{bn}满足b1=1,前n项和Bn=(3n2-n 2020-06-02 …
如何用MATLAB构造满足某条件的N*(N-1)的列满秩矩阵I(n)=(1,.,1)是个1*n的向 2020-06-27 …
已知等差数列{an}满足a2=0,a6+a8=-10求数列{an/2^n-1}的前n项和.(注;n 2020-07-09 …
已知函数f(x)=∣lg[(a+1)x+1]∣(1)求f(x)的定义域(2)当a=0时已知函数f( 2020-07-19 …
一个老人有n匹马,他把马全部分给两个儿子,大儿子得x匹,小儿子得y匹,(x>y≥1),并且满足x是 2020-07-21 …
已知数列{an}满足(n+1)an+1-nan=2,且a1=1,那么该数列的通项是?已知数列{an 2020-07-30 …
已知数列{an}的各项均为正数,Sn为、为其前n项和,对于任意的n∈N*满足关系式2Sn=3an- 2020-07-30 …
高中数学数列和解析几何题·一.已知数列{an}{bn}满足an=(1-nb)/(1+bn)b(n+ 2020-08-02 …
线性代数设n阶矩阵A满足关系式A^2+2A-3E=0则实数K满足什么条件时,A+kE是可逆的,并求它 2021-02-05 …