早教吧作业答案频道 -->其他-->
已知a,b是不相等的正实数,求证:a3+b3>a2b+ab2已知a,b是不相等的正实数,求证:a3+b3>a2b+ab2.
题目详情
已知a,b是不相等的正实数,求证:a3+b3>a2b+ab2
已知a,b是不相等的正实数,求证:a3+b3>a2b+ab2.
已知a,b是不相等的正实数,求证:a3+b3>a2b+ab2.
▼优质解答
答案和解析
证明:法一:(分析法)a3+b3>a2b+ab2 成立,
只需证(a+b)(a2-ab+b2)>ab(a+b)成立.
又因为a>0,故只需证a2-ab+b2>ab成立,
而依题设a≠b,则(a-b)2>0显然成立,由此命题得证.
法二:(综合法)∵a≠b,∴a-b≠0,∴a2-2ab+b2>0,∴a2-ab+b2>ab(*).
而a,b均为正数,∴a+b>0,∴(a+b)(a2-ab+b2)>ab(a+b)
∴a3+b3>a2b+ab2 成立.
只需证(a+b)(a2-ab+b2)>ab(a+b)成立.
又因为a>0,故只需证a2-ab+b2>ab成立,
而依题设a≠b,则(a-b)2>0显然成立,由此命题得证.
法二:(综合法)∵a≠b,∴a-b≠0,∴a2-2ab+b2>0,∴a2-ab+b2>ab(*).
而a,b均为正数,∴a+b>0,∴(a+b)(a2-ab+b2)>ab(a+b)
∴a3+b3>a2b+ab2 成立.
看了已知a,b是不相等的正实数,求...的网友还看了以下:
纠结ING:基本不等式为何a可用根号a替代?刚在预习基本不等式的时候,有个问题我很纠结.已经有:对 2020-05-13 …
已知a+b+c=0,试求a^2/(2a^2+bc)+b^2/(2b^2+ac)+c^2/(2c^2 2020-06-11 …
一道可能是关于中值问题的证明题f(x)在[a,b]上有三阶连续导数,f(a)=f(b)=0,证明: 2020-06-14 …
设A,B为同阶方阵,且通过初等变换可以化成相同的标准形,则:A.A和B的秩相等.B.A与B合同设A 2020-06-30 …
利用(a+b+c)^2=a^2+b^2^c^2+2ab+2ac+abc,推导(a+b+c)^2+a 2020-07-30 …
做出下面的题1.已知有理数a,b满足a^2+4b^2-a+4b+5/4=0;那么,-ab的相反数是多 2020-11-01 …
已知:n=1a^2-b^2=(a-b)(a+b);a^3-b^3=(a-b)(a^2+ab+b^2) 2020-12-23 …
已知a+b=2,ab=2,求1/2a^3b+a^2b^2+1/2ab^3的值!我是这样算的,ab(1 2020-12-31 …
设A.B.C.D为n阶方阵,E为n阶单位阵,则下列命题正确的是?(A)若A^2=0,则A=0(B)A 2021-01-12 …
函数f[x]=logaXa大于0,且a不等于1,在2,3上最大值为1,则a=当a大于1时,f(x)图 2021-01-15 …