早教吧作业答案频道 -->数学-->
设Sn是正项数列an的前n项和,知4Sn=an^2+2an-3,求an.知bn=2^n,求Tn=a1b1+a2a2……+anbn的值
题目详情
设Sn是正项数列an的前n项和,知4Sn=an^2+2an-3,求an.知bn=2^n,求Tn=a1b1+a2a2……+anbn的值
▼优质解答
答案和解析
4s(n)=[a(n)]^2 + 2a(n)-3,
4a(1)=4s(1)=[a(1)]^2 + 2a(1)-3, 0 = [a(1)]^2-2a(1)-3=[a(1)-3][a(1)+1], a(1)=3.
4s(n+1)=[a(n+1)]^2 + 2a(n+1)-3,
4a(n+1)=4s(n+1)-4s(n)=[a(n+1)]^2 + 2a(n+1)-[a(n)]^2 - 2a(n),
0 = [a(n+1)]^2 - 2a(n+1) - [a(n)]^2 - 2a(n)
= [a(n+1)+a(n)][a(n+1)-a(n)] - 2[a(n+1)+a(n)]
=[a(n+1)+a(n)[a(n+1)-a(n)-2],
0 = a(n+1)-a(n)-2,
a(n+1)=a(n)+2,
{a(n)}是首项为a(1)=3,公差为2的等差数列.
a(n)=3+2(n-1)=2n+1.
c(n)=a(n)2^n=(2n+1)2^n,
t(n)=c(1)+c(2)+...+c(n-1)+c(n)=(2*1+1)2+(2*2+1)2^2+...+[2(n-1)+1]2^(n-1)+(2n+1)2^n,
2t(n)=(2*1+1)2^2+(2*2+1)2^3+...+[2(n-1)+1]2^n + (2n+1)2^(n+1),
t(n)=2t(n)-t(n)=-(2*1+1)2-2*2^2-...-2*2^n+(2n+1)2^(n+1)
=-6-2^3(1+2+..+2^(n-2)) + (2n+1)2^(n+1)
=(2n+1)2^(n+1)-6-8[2^(n-1)-1]/(2-1)
=(2n+1)2^(n+1)-6-2^(n+2) + 8
=(2n-1)2^(n+1)+2
4a(1)=4s(1)=[a(1)]^2 + 2a(1)-3, 0 = [a(1)]^2-2a(1)-3=[a(1)-3][a(1)+1], a(1)=3.
4s(n+1)=[a(n+1)]^2 + 2a(n+1)-3,
4a(n+1)=4s(n+1)-4s(n)=[a(n+1)]^2 + 2a(n+1)-[a(n)]^2 - 2a(n),
0 = [a(n+1)]^2 - 2a(n+1) - [a(n)]^2 - 2a(n)
= [a(n+1)+a(n)][a(n+1)-a(n)] - 2[a(n+1)+a(n)]
=[a(n+1)+a(n)[a(n+1)-a(n)-2],
0 = a(n+1)-a(n)-2,
a(n+1)=a(n)+2,
{a(n)}是首项为a(1)=3,公差为2的等差数列.
a(n)=3+2(n-1)=2n+1.
c(n)=a(n)2^n=(2n+1)2^n,
t(n)=c(1)+c(2)+...+c(n-1)+c(n)=(2*1+1)2+(2*2+1)2^2+...+[2(n-1)+1]2^(n-1)+(2n+1)2^n,
2t(n)=(2*1+1)2^2+(2*2+1)2^3+...+[2(n-1)+1]2^n + (2n+1)2^(n+1),
t(n)=2t(n)-t(n)=-(2*1+1)2-2*2^2-...-2*2^n+(2n+1)2^(n+1)
=-6-2^3(1+2+..+2^(n-2)) + (2n+1)2^(n+1)
=(2n+1)2^(n+1)-6-8[2^(n-1)-1]/(2-1)
=(2n+1)2^(n+1)-6-2^(n+2) + 8
=(2n-1)2^(n+1)+2
看了设Sn是正项数列an的前n项和...的网友还看了以下:
[2013·天津高考]已知双曲线-=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0) 2020-04-08 …
已知aΔb=(a-b)2,a※b=(a+b)(a-b),例如,1Δ2=(1-2)2=1,1※2=( 2020-05-15 …
15.若垂直于直线2x+y=0,且与圆x2+y2=5相切的切线方程为ax+2y+c=0,则ac的值 2020-06-15 …
怎么把v=vo+at和x=vot+½at²联立由V=V0+a*t得t=(V-V0)/a代入X=V0 2020-07-18 …
已知等比数列的前n项和Sn=4的n次方+a则a的值等于()A.-4B.-1C.0D.1∵等比数列{ 2020-07-27 …
①已知集合A={-2,1,2},A={√a+1,a},且B是A的子集,则实数a的值是②已知集合A= 2020-07-29 …
设F1,F2分别为双曲线-=1(a>0,b>0)的左,右焦点,若在双曲线右支上存在一点P,满足|P 2020-07-30 …
下列等式中,不正确的是A.a-b=a+(-b)B.向量0-a=-aC.-(-a)=aD.a+(-a) 2020-11-07 …
[2014·大同模拟]设双曲线-=1(a>0)的渐近线方程为3x±2y=0,则a的值为()A.4B. 2020-11-11 …
双曲线-=1(a>0,b>0)的一条渐近线方程为y=x,则有A.a=2bB.b=aC.b=2aD.a 2021-01-23 …