早教吧作业答案频道 -->数学-->
设Sn是正项数列an的前n项和,知4Sn=an^2+2an-3,求an.知bn=2^n,求Tn=a1b1+a2a2……+anbn的值
题目详情
设Sn是正项数列an的前n项和,知4Sn=an^2+2an-3,求an.知bn=2^n,求Tn=a1b1+a2a2……+anbn的值
▼优质解答
答案和解析
4s(n)=[a(n)]^2 + 2a(n)-3,
4a(1)=4s(1)=[a(1)]^2 + 2a(1)-3, 0 = [a(1)]^2-2a(1)-3=[a(1)-3][a(1)+1], a(1)=3.
4s(n+1)=[a(n+1)]^2 + 2a(n+1)-3,
4a(n+1)=4s(n+1)-4s(n)=[a(n+1)]^2 + 2a(n+1)-[a(n)]^2 - 2a(n),
0 = [a(n+1)]^2 - 2a(n+1) - [a(n)]^2 - 2a(n)
= [a(n+1)+a(n)][a(n+1)-a(n)] - 2[a(n+1)+a(n)]
=[a(n+1)+a(n)[a(n+1)-a(n)-2],
0 = a(n+1)-a(n)-2,
a(n+1)=a(n)+2,
{a(n)}是首项为a(1)=3,公差为2的等差数列.
a(n)=3+2(n-1)=2n+1.
c(n)=a(n)2^n=(2n+1)2^n,
t(n)=c(1)+c(2)+...+c(n-1)+c(n)=(2*1+1)2+(2*2+1)2^2+...+[2(n-1)+1]2^(n-1)+(2n+1)2^n,
2t(n)=(2*1+1)2^2+(2*2+1)2^3+...+[2(n-1)+1]2^n + (2n+1)2^(n+1),
t(n)=2t(n)-t(n)=-(2*1+1)2-2*2^2-...-2*2^n+(2n+1)2^(n+1)
=-6-2^3(1+2+..+2^(n-2)) + (2n+1)2^(n+1)
=(2n+1)2^(n+1)-6-8[2^(n-1)-1]/(2-1)
=(2n+1)2^(n+1)-6-2^(n+2) + 8
=(2n-1)2^(n+1)+2
4a(1)=4s(1)=[a(1)]^2 + 2a(1)-3, 0 = [a(1)]^2-2a(1)-3=[a(1)-3][a(1)+1], a(1)=3.
4s(n+1)=[a(n+1)]^2 + 2a(n+1)-3,
4a(n+1)=4s(n+1)-4s(n)=[a(n+1)]^2 + 2a(n+1)-[a(n)]^2 - 2a(n),
0 = [a(n+1)]^2 - 2a(n+1) - [a(n)]^2 - 2a(n)
= [a(n+1)+a(n)][a(n+1)-a(n)] - 2[a(n+1)+a(n)]
=[a(n+1)+a(n)[a(n+1)-a(n)-2],
0 = a(n+1)-a(n)-2,
a(n+1)=a(n)+2,
{a(n)}是首项为a(1)=3,公差为2的等差数列.
a(n)=3+2(n-1)=2n+1.
c(n)=a(n)2^n=(2n+1)2^n,
t(n)=c(1)+c(2)+...+c(n-1)+c(n)=(2*1+1)2+(2*2+1)2^2+...+[2(n-1)+1]2^(n-1)+(2n+1)2^n,
2t(n)=(2*1+1)2^2+(2*2+1)2^3+...+[2(n-1)+1]2^n + (2n+1)2^(n+1),
t(n)=2t(n)-t(n)=-(2*1+1)2-2*2^2-...-2*2^n+(2n+1)2^(n+1)
=-6-2^3(1+2+..+2^(n-2)) + (2n+1)2^(n+1)
=(2n+1)2^(n+1)-6-8[2^(n-1)-1]/(2-1)
=(2n+1)2^(n+1)-6-2^(n+2) + 8
=(2n-1)2^(n+1)+2
看了设Sn是正项数列an的前n项和...的网友还看了以下:
蚊子与大象比体重设蚊子的体重n克,大象体重m克,有设m+n=2a,则有m-a=a-n.两边平方,得 2020-04-27 …
已知递增数列{an}满足:a1=1,2a(n+1)=an+a(n+2)(n∈N*),且a1,a2, 2020-05-13 …
已知数列a(n)中,当n为奇数时a(n+1)-a(n)=1,当n为偶数时,a(n+1)-a(n)= 2020-05-13 …
设A为n阶矩阵,证明A^n=0的充要条件是A^(n+1)=0 2020-05-16 …
已知M=2×3×a,N=2×7×a,如果M,N两数的最大公因数是10,那么a= 2020-05-16 …
弱弱的一道选择题将一带负电的物体M靠近一不带电的导体N,在N左端感应出正电荷,右端感应出负电荷.若 2020-05-17 …
(2014•崇明县二模)平面直角坐标系xoy中,已知点(n,an)(n∈N*)在函数y=ax(a≥ 2020-05-17 …
已知无穷级数∑(n=1~∞)an=a,则级数∑(n=1~∞)(an-a(n1))的和等于则级数∑( 2020-05-17 …
已知等比数列{a∨n}是递增数列,且a∨5-a∨1=15,a∨4-a∨6=6.求数列{a∨n}的通 2020-05-23 …
已知(a^n·b^m·b)^3=a^19·b^15,那么m、n的值分别是?3Q题中a^n指的是a的 2020-06-03 …