早教吧作业答案频道 -->数学-->
已知数列{an}和{bn}满足a1=2,b1=1,an+1=2an(n∈N*),b1+12b2+13b3+…+1bn=bn+1-1(n∈N*).(Ⅰ)求an与bn;(Ⅱ)记数列{anbn}的前n项和为Tn,求Tn.
题目详情
已知数列{an}和{bn}满足a1=2,b1=1,an+1=2an(n∈N*),b1+
b2+
b3+…+
=bn+1-1(n∈N*).
(Ⅰ)求an与bn;
(Ⅱ)记数列{anbn}的前n项和为Tn,求Tn.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| bn |
(Ⅰ)求an与bn;
(Ⅱ)记数列{anbn}的前n项和为Tn,求Tn.
▼优质解答
答案和解析
(Ⅰ)由a1=2,an+1=2an,得:an=2n;
由b1=1,b1+
b2+
b3+…+
=bn+1-1知,
当n=1时,b1=b2-1,故b2=2.
当n≥2时,
bn=bn+1-bn,整理得:
=
,
∴
=
,
=
,…,
=
(n≥2).
累积可得:bn=n,
验证b1=1成立,
∴bn=n;
(Ⅱ)由(1)知,anbn=n•2n,
∴数列{anbn}的前n项和为Tn=2+2×22+3×23+…+n×2n,
2Tn=22+2×23+3×24+…+(n-1)×2n+n×2n+1,
作差可得:-Tn=2+22+23+…+2n-n×2n+1=
-n×2n+1=2n+1-2-n×2n+1,
∴Tn=(n-1)×2n+1+2.
由b1=1,b1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| bn |
当n=1时,b1=b2-1,故b2=2.
当n≥2时,
| 1 |
| n |
| bn+1 |
| bn |
| n+1 |
| n |
∴
| b2 |
| b1 |
| 2 |
| 1 |
| b3 |
| b2 |
| 3 |
| 2 |
| bn |
| bn-1 |
| n |
| n-1 |
累积可得:bn=n,
验证b1=1成立,
∴bn=n;
(Ⅱ)由(1)知,anbn=n•2n,
∴数列{anbn}的前n项和为Tn=2+2×22+3×23+…+n×2n,
2Tn=22+2×23+3×24+…+(n-1)×2n+n×2n+1,
作差可得:-Tn=2+22+23+…+2n-n×2n+1=
| 2(1-2n) |
| 1-2 |
∴Tn=(n-1)×2n+1+2.
看了已知数列{an}和{bn}满足...的网友还看了以下:
1.求数列1,x+x^2,x^2+x^3+x^4,x^3+x^4+x^5+x^6,...前n项之和2 2020-03-30 …
已知数列{an}的前n项和为Sn,且满足Sn+n=2an(n∈N*).(1)证明:数列{an+1} 2020-05-13 …
已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=((n+1)/2)a(n+1)(n 2020-05-16 …
设a1=1,an+1=a2n?2an+2+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{an} 2020-05-17 …
(2014•青岛一模)在数列{an}(n∈N*)中,其前n项和为Sn,满足2Sn=n-n2.(Ⅰ) 2020-06-12 …
已知数列an中a1=1/2,点(n,2an+1-an)在直线y=x上其n=1,2,3……(n,2a 2020-07-09 …
数列{An}的前n项和为Sn,且A1=1,A(n+1)=1\3·Sn,n=1,2,3,…,求A2, 2020-07-09 …
已知a1=5,an=2an-1+3^n,求{an}的通项公式an=2an-1+3^n两边同加3^n 2020-07-22 …
如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式,你认为其中正确的有()①(2a+b) 2020-11-07 …
已知a1=2,an=(2*a(n-1)+1)求an,不用详解,比如an-a(n-1)还有问下那个依次 2021-01-05 …