已知数列{an}和{bn}满足a1=2,b1=1,an+1=2an(n∈N*),b1+12b2+13b3+…+1bn=bn+1-1(n∈N*).(Ⅰ)求an与bn;(Ⅱ)记数列{anbn}的前n项和为Tn,求Tn.
已知数列{an}和{bn}满足a1=2,b1=1,an+1=2an(n∈N*),b1+b2+b3+…+=bn+1-1(n∈N*).
(Ⅰ)求an与bn;
(Ⅱ)记数列{anbn}的前n项和为Tn,求Tn.
答案和解析
(Ⅰ)由a
1=2,a
n+1=2a
n,得:
an=2n;
由b1=1,b1+b2+b3+…+=bn+1-1知,
当n=1时,b1=b2-1,故b2=2.
当n≥2时,bn=bn+1-bn,整理得:=,
∴=,=,…,=(n≥2).
累积可得:bn=n,
验证b1=1成立,
∴bn=n;
(Ⅱ)由(1)知,anbn=n•2n,
∴数列{anbn}的前n项和为Tn=2+2×22+3×23+…+n×2n,
2Tn=22+2×23+3×24+…+(n-1)×2n+n×2n+1,
作差可得:-Tn=2+22+23+…+2n-n×2n+1=-n×2n+1=2n+1-2-n×2n+1,
∴Tn=(n-1)×2n+1+2.
填空:1/n(n+1)=();1/n(n+2)=()(n为正整数)填空:1/n(n+1)=();1 2020-04-26 …
已知数列an的前n项和为Sn,a1且Sn=S(n-1)+a(n-1)+1/2,数列bn满足b1=- 2020-05-13 …
已知数列{an}中,a1=1且点pn(an,an+1)(n∈N+)在直线x-y+1=0上,(1)求 2020-05-13 …
数列1/n*(n+1)的前n项和Sn=(1/1*2)+(1/2*3)+.1/n*(n+1),求Sn 2020-05-14 …
1)已知数列{an}满足a1=1,n≥2时,an-1-an=2an-1an,求通项公式an2)已知 2020-06-11 …
给定数列{an}={a0;a1;a2an;}设bn=an-an-1(n=1,2,3),若数列{bn 2020-07-09 …
数列{an}与{bn}满足关系:a1=2,a(n+1)=(an^2+1)/2an,bn=(an+1 2020-07-22 …
括号为下标在数列[a(n)]中,已知a(1)=2,a(n+1)=4a(n)-3n+1,n∈N*.1 2020-07-29 …
高中数列题(说明:"[]"中内容表示下标)以数列{a[n]}的任意相邻两项为坐标的点P[n](a[ 2020-07-29 …
数论+集合1.证明5个相继的正整数之积不是完全平方数设n≥3,(n-2)(n-1)n(n+1)(n+ 2020-10-31 …