早教吧作业答案频道 -->数学-->
已知数列{an}和{bn}满足a1=2,b1=1,an+1=2an(n∈N*),b1+12b2+13b3+…+1bn=bn+1-1(n∈N*).(Ⅰ)求an与bn;(Ⅱ)记数列{anbn}的前n项和为Tn,求Tn.
题目详情
已知数列{an}和{bn}满足a1=2,b1=1,an+1=2an(n∈N*),b1+
b2+
b3+…+
=bn+1-1(n∈N*).
(Ⅰ)求an与bn;
(Ⅱ)记数列{anbn}的前n项和为Tn,求Tn.
1 |
2 |
1 |
3 |
1 |
bn |
(Ⅰ)求an与bn;
(Ⅱ)记数列{anbn}的前n项和为Tn,求Tn.
▼优质解答
答案和解析
(Ⅰ)由a1=2,an+1=2an,得:an=2n;
由b1=1,b1+
b2+
b3+…+
=bn+1-1知,
当n=1时,b1=b2-1,故b2=2.
当n≥2时,
bn=bn+1-bn,整理得:
=
,
∴
=
,
=
,…,
=
(n≥2).
累积可得:bn=n,
验证b1=1成立,
∴bn=n;
(Ⅱ)由(1)知,anbn=n•2n,
∴数列{anbn}的前n项和为Tn=2+2×22+3×23+…+n×2n,
2Tn=22+2×23+3×24+…+(n-1)×2n+n×2n+1,
作差可得:-Tn=2+22+23+…+2n-n×2n+1=
-n×2n+1=2n+1-2-n×2n+1,
∴Tn=(n-1)×2n+1+2.
由b1=1,b1+
1 |
2 |
1 |
3 |
1 |
bn |
当n=1时,b1=b2-1,故b2=2.
当n≥2时,
1 |
n |
bn+1 |
bn |
n+1 |
n |
∴
b2 |
b1 |
2 |
1 |
b3 |
b2 |
3 |
2 |
bn |
bn-1 |
n |
n-1 |
累积可得:bn=n,
验证b1=1成立,
∴bn=n;
(Ⅱ)由(1)知,anbn=n•2n,
∴数列{anbn}的前n项和为Tn=2+2×22+3×23+…+n×2n,
2Tn=22+2×23+3×24+…+(n-1)×2n+n×2n+1,
作差可得:-Tn=2+22+23+…+2n-n×2n+1=
2(1-2n) |
1-2 |
∴Tn=(n-1)×2n+1+2.
看了已知数列{an}和{bn}满足...的网友还看了以下:
已知{an}是公差不为零的等差数列,a1=1,a1,a3,a9成等比数列.求:(Ⅰ)数列{an}的 2020-05-13 …
已知数列{an}的前n项和Sn=-1/2n^2+kn,k∈N*,且Sn的最大值为81)确定常数k, 2020-05-13 …
设数列{an}的前n项和为Sn,对任意n∈N*满足2Sn=an(an+1),且an≠0.(Ⅰ)求数 2020-07-14 …
已知数列{an}各项均为正数,其前n项和为Sn,且a1=1,anan+1=2Sn.(n∈N*)(1 2020-07-22 …
已知数列{an},{bn},满足a1=2,2an=1+an•an+1,bn=an-1(bn≠0). 2020-07-23 …
给出下列等式:(ⅰ)an+1-an=p(p为常数);(ⅱ)2an+1=an+an+2(n∈N*); 2020-08-02 …
已知等差数列{an}中,2a2+a3+a5=20,且前10项和S10=100.(I)求数列{an}的 2020-10-31 …
已知数列Sn=2An+(-1)^nn大于一试证明对于任意m大于4有1/A4+1/A5+1/A6+.+ 2020-10-31 …
已知数列Sn=2An+(-1)^nn大于一试证明对于任意m大于4有1/A4+1/A5+1/A6+.+ 2020-10-31 …
等比数列{an}中,若a10a11=2,则数列{log1/2an}的前20项和为 2020-10-31 …