早教吧作业答案频道 -->数学-->
等差数列{an}满足:a2=5,a4+a10=30,{an}的前n项和为sn.(1)求an及Sn(2)数列{bn}满足bn(an^2---1)=8(n属于N+)数列bn前n项和为Tn,求证,Tn<2
题目详情
等差数列{an}满足:a2=5 ,a4+a10=30,{an}的前n项和为sn.
(1)求an及Sn
(2)数列{bn}满足bn(an^2---1)=8(n属于N+)数列bn前n项和为Tn,求证,Tn<2
(1)求an及Sn
(2)数列{bn}满足bn(an^2---1)=8(n属于N+)数列bn前n项和为Tn,求证,Tn<2
▼优质解答
答案和解析
(1) a2=a1+d=5,a4+a10=(a1+3d)+(a1+9d)=2a1+12d=30
∴a1=3,d=2,∴an=a1+(n-1)d=3+2(n-1)=2n+1
Sn=n(a1+an)/2=n(3+2n+1)/2=n^2+2n
∴an=2n+1,Sn=n^2+2n (n∈N+)
(2) bn=8/[(an)^2-1]=8/[(2n+1)^2-1]=8/[2n(2n+2)]=2/[n(n+1)]=2[1/n-1/(n+1)]
∴Tn=2[1-1/2+1/2-1/3+1/3-1/4+……+1/n-1/(n+1)]
=2[1-1/(n+1)]
∴a1=3,d=2,∴an=a1+(n-1)d=3+2(n-1)=2n+1
Sn=n(a1+an)/2=n(3+2n+1)/2=n^2+2n
∴an=2n+1,Sn=n^2+2n (n∈N+)
(2) bn=8/[(an)^2-1]=8/[(2n+1)^2-1]=8/[2n(2n+2)]=2/[n(n+1)]=2[1/n-1/(n+1)]
∴Tn=2[1-1/2+1/2-1/3+1/3-1/4+……+1/n-1/(n+1)]
=2[1-1/(n+1)]
看了等差数列{an}满足:a2=5...的网友还看了以下:
已知数列{an}的前n项和为Sn,点(n,Sn/n)在直线y=1/2x+11/2上,数列{bn}满足 2020-03-30 …
已知数列{an}的前n项和为Sn,点(n,Sn/n)在直线y=1/2x+11/2上,数列{bn}满足 2020-03-30 …
已知各项均不为零的数列{an}的前n项和为Sn,且Sn=ana(n+1)/2,其中a1=1,求{a 2020-05-13 …
等比数列{an}的前n项和为Sn,Sn=2的n次方+m,(1)求m(2)bn=4an分之n+1,求 2020-05-23 …
已知数列{an}的通项公式为log2[(n+1)/(n+2)],设其前n项和为Sn,则使Sn≮-5 2020-06-27 …
数列{n×2^(n-1)}的前n项和为多少?A.-n*2^n-1+2^nBn*2^n+1-2^nC 2020-07-09 …
在等差数列{an}中(1)若{an}的前n项和为377,项数n为奇数,且前n项和中奇数项与偶数项和 2020-07-11 …
已知数列{an}的前n项和为Sn=n^2+n+1(1)求数列{an}的通项公式(2)已知数列{an 2020-07-11 …
已知数列{an}的前n项和为Sn,且曲线y=x^2-nx+1(n∈N)在x=an处的切线的斜率恰好 2020-07-21 …
设数列{an}的前n项和为sn,已知sn=2an-2^(n+1),(1).求证数列{an/2^n} 2020-07-23 …