早教吧作业答案频道 -->其他-->
1.已知抛物线Y^2=-X与直线L:Y=K(X+1)相交于A,B两点,(1)求证:OA垂直OB(2)当△OAB的面积等于√10时,求K的值.2.直线L:Y=KX+1与双曲线C:2X^2-Y^2=1的右支相交于不同的两点A,B求实数K的取值范围.
题目详情
1.已知抛物线Y^2=-X与直线L:Y=K(X+1)相交于A,B两点,
(1)求证:OA垂直OB
(2)当△OAB的面积等于√10时,求K的值.
2.直线L:Y=KX+1与双曲线C:2X^2-Y^2=1的右支相交于不同的两点A,B 求实数K的取值范围.
(1)求证:OA垂直OB
(2)当△OAB的面积等于√10时,求K的值.
2.直线L:Y=KX+1与双曲线C:2X^2-Y^2=1的右支相交于不同的两点A,B 求实数K的取值范围.
▼优质解答
答案和解析
解(1)分别设OA,OB的斜率为k1,A(x1,y1),B(x2,y2)
∴k1=y1/xi,k2=y2/x2
解 y²=-x
y=k(x+1) 得k²x+(1+2k²)x+k²=0
∴x1x2=1,x1+x2=-(1+2k²)/k²
y1y1=k²(x1x2+x1+x2+1)=-1
∴k1k2=y1y2/x1x2=-1
所以OA⊥OB⊥
(2)√(x1²+y1²)√(x2²+y2²)=2√10
∴(x1²+y1²)(x2²+y2²)=40
x1²x2²+x2²y1²+x1y2²+y1²y2²=40
∵x1x2=1,y1y1=-1
∴x2²y1²+x1y2²+2=40
∵y²=-x
∴-x1x2(x1+x2)=38
∴=(1+2k²)/k²=38
解得k=-1/6或1/6
∴k1=y1/xi,k2=y2/x2
解 y²=-x
y=k(x+1) 得k²x+(1+2k²)x+k²=0
∴x1x2=1,x1+x2=-(1+2k²)/k²
y1y1=k²(x1x2+x1+x2+1)=-1
∴k1k2=y1y2/x1x2=-1
所以OA⊥OB⊥
(2)√(x1²+y1²)√(x2²+y2²)=2√10
∴(x1²+y1²)(x2²+y2²)=40
x1²x2²+x2²y1²+x1y2²+y1²y2²=40
∵x1x2=1,y1y1=-1
∴x2²y1²+x1y2²+2=40
∵y²=-x
∴-x1x2(x1+x2)=38
∴=(1+2k²)/k²=38
解得k=-1/6或1/6
看了1.已知抛物线Y^2=-X与直...的网友还看了以下:
一道数学题:如图,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.过点A作AP∥BC交 2020-05-13 …
抛物线Y=X2-(a+1)x+a交X轴于A(1,0)B两点,交Y轴于C(1)三角形ABC的面积为3 2020-05-13 …
如图,抛物线y=ax²+bx+4的对称轴是直线x=3/2,与x轴交于C,并且点A的坐标为(-1,0 2020-05-15 …
如图,抛物线y=ax^2+bx(a>0)与双曲线y=k/x相交于点A,B,已知点A坐标为(1,-4 2020-05-16 …
已知点A(-1,2)是抛物线C:y=2x2上的点,直线l1过点A,且与抛物线C相切,直线l2:x= 2020-06-12 …
已知抛物线y=一x2+bx+c与x轴的两仑交点分别为A(m,0),B(n,0),且m十n=4,n分 2020-07-02 …
已知抛物线y=一x2+bx+c与x轴的两仑交点分别为A(m,0),B(n,0),且m十n=4,n分 2020-07-02 …
已知点A(-1,0),B(1,-1)和抛物线C:y2=4x,O为坐标原点,过点A的动直线l交抛物线 2020-07-24 …
如图,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C(1)求A、B、C三点的坐标;(2 2020-07-29 …
如图所示,已知抛物线y=x平方-1与x轴交与A,B俩点,与y轴交与点C.1)求A,B,C三点坐标2) 2021-01-10 …