早教吧作业答案频道 -->数学-->
已知x1^2+x2^2+…+xn^2=(x1+x2+…+xn)^2/n求证:x1=x2=…=xn
题目详情
已知x1^2+x2^2+…+xn^2=(x1+x2+…+xn)^2/n求证:x1=x2=…=xn
▼优质解答
答案和解析
由柯西不等式,有:
(a1^2+a2^2+a3^2+······+an^2)(x1^2+x2^2+x3^2+······+xn^2)
≧(a1x1+a2x2+a3x3+······+anxn)^2.
令a1=a2=a3=······=an=1,得:
n(x1^2+x2^2+x3^2+······+xn^2)≧(x1+x2+x3+······+xn)^2,
∴x1^2+x2^2+x3^2+······+xn^2≧(1/n)(x1+x2+x3+······+xn)^2.
很明显,当x1/a1=x2/a2=x3/a3=······=xn/an时取等号,∴x1=x2=x3=······=xn.
[下面证明柯西不等式及取等号的条件]
引入二次函数y=(A1x+B1)^2+(A2x+B2)^2+(A3x+B3)^2+······+(Anx+Bn)^2.
显然有:y≧0.
又y=(A1^2+A2^2+A3^2+······+An^2)x^2+2(A1B1+A2B2+A3B3+······+AnBn)x
+(B1^2+B2^2+B3^2+······+Bn^2).
∴函数的图象是一条开口向上的抛物线,
∴要确保y≧0,就需要方程
(A1^2+A2^2+A3^2+······+An^2)x^2+2(A1B1+A2B2+A3B3+······+AnBn)x
+(B1^2+B2^2+B3^2+······+Bn^2)=0的判别式≦0,
∴[2(A1B1+A2B2+A3B3+······+AnBn)]^2
-4(A1^2+A2^2+A3^2+······+An^2)(B1^2+B2^2+B3^2+······+Bn^2)≦0,
∴(A1^2+A2^2+A3^2+······+An^2)(B1^2+B2^2+B3^2+······+Bn^2)
≧(A1B1+A2B2+A3B3+······+AnBn)^2.
自然,当取等号时,就意味着
(A1x+B1)^2+(A2x+B2)^2+(A3x+B3)^2+······+(Anx+Bn)^2=0,
∴A1x+B1=A2x+B2=A3x+B3=······=Anx+Bn=0,
∴x=B1/A1=B2/A2=B3/A3=······=Bn/An,∴A1/B1=A2/B1=A3/B3=······=An/Bn.
∴当A1/B1=A2/B1=A3/B3=······=An/Bn时,
(A1^2+A2^2+A3^2+······+An^2)(B1^2+B2^2+B3^2+······+Bn^2)
≧(A1B1+A2B2+A3B3+······+AnBn)^2取等号.
(a1^2+a2^2+a3^2+······+an^2)(x1^2+x2^2+x3^2+······+xn^2)
≧(a1x1+a2x2+a3x3+······+anxn)^2.
令a1=a2=a3=······=an=1,得:
n(x1^2+x2^2+x3^2+······+xn^2)≧(x1+x2+x3+······+xn)^2,
∴x1^2+x2^2+x3^2+······+xn^2≧(1/n)(x1+x2+x3+······+xn)^2.
很明显,当x1/a1=x2/a2=x3/a3=······=xn/an时取等号,∴x1=x2=x3=······=xn.
[下面证明柯西不等式及取等号的条件]
引入二次函数y=(A1x+B1)^2+(A2x+B2)^2+(A3x+B3)^2+······+(Anx+Bn)^2.
显然有:y≧0.
又y=(A1^2+A2^2+A3^2+······+An^2)x^2+2(A1B1+A2B2+A3B3+······+AnBn)x
+(B1^2+B2^2+B3^2+······+Bn^2).
∴函数的图象是一条开口向上的抛物线,
∴要确保y≧0,就需要方程
(A1^2+A2^2+A3^2+······+An^2)x^2+2(A1B1+A2B2+A3B3+······+AnBn)x
+(B1^2+B2^2+B3^2+······+Bn^2)=0的判别式≦0,
∴[2(A1B1+A2B2+A3B3+······+AnBn)]^2
-4(A1^2+A2^2+A3^2+······+An^2)(B1^2+B2^2+B3^2+······+Bn^2)≦0,
∴(A1^2+A2^2+A3^2+······+An^2)(B1^2+B2^2+B3^2+······+Bn^2)
≧(A1B1+A2B2+A3B3+······+AnBn)^2.
自然,当取等号时,就意味着
(A1x+B1)^2+(A2x+B2)^2+(A3x+B3)^2+······+(Anx+Bn)^2=0,
∴A1x+B1=A2x+B2=A3x+B3=······=Anx+Bn=0,
∴x=B1/A1=B2/A2=B3/A3=······=Bn/An,∴A1/B1=A2/B1=A3/B3=······=An/Bn.
∴当A1/B1=A2/B1=A3/B3=······=An/Bn时,
(A1^2+A2^2+A3^2+······+An^2)(B1^2+B2^2+B3^2+······+Bn^2)
≧(A1B1+A2B2+A3B3+······+AnBn)^2取等号.
看了已知x1^2+x2^2+…+x...的网友还看了以下:
已知关于x的方程x2-2√3x-a=0的一个根为√3+2√2,求另一个根及a的值.√是根号2√3是 2020-05-16 …
证明:1.若f(x)=a+b,则f(x1/2+x2/2)=f(x1)/2+f(x2)/2.2.若g 2020-05-17 …
对于方程x2-2|x|+2=m,如果方程实根的个数恰为3个,则m值等于()A.1B.2C.3D.2 2020-06-12 …
求1+2+2^2+2^3+2^4+…+2^2014的值.设S=1+2+2^2+2^3+2^4+…+ 2020-07-09 …
二次型的化标准型的问题!设XTAX=x1^2+4*x2^2+x3^2+2aX1X2+2bX1X3+ 2020-07-31 …
数学分析齐次函数和欧拉定理的两个问题(不是很难,1、已知函数f(x1,x2)=(x1^2+x2^2 2020-08-02 …
xyz=1,x+y+z=2,x^2+y^2+z^2=3,求x,y,z我解:xy=1/z,x+y=2- 2020-10-31 …
观察下列各式然后回答问题:1-1/2^2=1/2*2/3,1-1/3^2+2/3*4/3,1-1/4 2020-11-01 …
已知a,b属于正实数a^2+b^2/2=1求y=a√(1+b^2)的最大值参考书上是用y^2=[a√ 2020-12-31 …
这些题怎么数学解1已知(x+m)^2(x^2-2x+3)+x(x+1)中不含x^2项求m的值2已知a 2020-12-31 …