早教吧作业答案频道 -->数学-->
x,y,z>0x^2/(1+x^2)+y^2/(1+y^2)+z^2/(1+z^2)=2求证x/(1+x^2)+y/(1+y^2)+z/(1+z^2)最大值我做了好久了,求帮帮忙x^2/(1+x^2)+y^2/(1+y^2)+z^2/(1+z^2)=2(a)所以:1/(1+x^2)+1/(1+y^2)+1/(1+z^2)=1(b)为是么?
题目详情
x,y,z>0 x^2/(1+x^2)+y^2/(1+y^2)+z^2/(1+z^2)=2求证x/(1+x^2)+y/(1+y^2)+z/(1+z^2)最大值
我做了好久了,求帮帮忙
x^2/(1+x^2)+y^2/(1+y^2)+z^2/(1+z^2)=2 (a)
所以:
1/(1+x^2)+1/(1+y^2)+1/(1+z^2)=1 (b)
为是么?
我做了好久了,求帮帮忙
x^2/(1+x^2)+y^2/(1+y^2)+z^2/(1+z^2)=2 (a)
所以:
1/(1+x^2)+1/(1+y^2)+1/(1+z^2)=1 (b)
为是么?
▼优质解答
答案和解析
x^2/(1+x^2)+y^2/(1+y^2)+z^2/(1+z^2)=2 (a)
所以:
1/(1+x^2)+1/(1+y^2)+1/(1+z^2)=1 (b)
(a)+(b)*2,得到:
(x^2+2)/(1+x^2)+(y^2+2)/(1+y^2)+(z^2+2)/(1+z^2)=4
x^2+2>=2*(2)^(1/2)*x,同理y,z.所以:
4>=2*(2)^(1/2)*[x/(1+x^2)+y/(1+y^2)+z/(1+z^2)]
所以:
x/(1+x^2)+y/(1+y^2)+z/(1+z^2)
所以:
1/(1+x^2)+1/(1+y^2)+1/(1+z^2)=1 (b)
(a)+(b)*2,得到:
(x^2+2)/(1+x^2)+(y^2+2)/(1+y^2)+(z^2+2)/(1+z^2)=4
x^2+2>=2*(2)^(1/2)*x,同理y,z.所以:
4>=2*(2)^(1/2)*[x/(1+x^2)+y/(1+y^2)+z/(1+z^2)]
所以:
x/(1+x^2)+y/(1+y^2)+z/(1+z^2)
看了x,y,z>0x^2/(1+x...的网友还看了以下:
已知向量a=(2,1),b=(x,y).(1)若x∈{-1,0,1,2},y∈{-1,0,1},求向 2020-03-30 …
初一数学--------答案正确且速度快者可获积分50!1.已知1/a-1/b=1/(a+b),求 2020-05-14 …
已知A=x^2-y^2-xy,B=3xy+x^2,求1/2[2(A-B)-3A]-1/2A的值,其 2020-05-20 …
已知A={1,2,a},B={1,a的二次方},A∪B={1,2,a},求所有可能的a值已知A={ 2020-06-02 …
若实数a、b、c满足根号a+根号(b-1)+根号(c-2)=1/2(a+b+c),解这题里(a-2 2020-07-22 …
设有向量α1=(1,0,2,3)α2=(1,1,3,5)α3=(1,-1,a+2,1)α4=(1, 2020-07-26 …
若1/a:1/b:1/c=2:3:4,则a:b:c帮我看一下..1.若1/a:1/b:1/c=2: 2020-07-31 …
化简:(1)x^2-4y^2/x-2y(2)a^3-2a/a(3)x^2-x/x-1(4)(x+2) 2020-11-01 …
已知a,b属于正实数a^2+b^2/2=1求y=a√(1+b^2)的最大值参考书上是用y^2=[a√ 2020-12-31 …
化简x^2+1/x^2-1)-(x-2/x-1)除以x-2/x,并选取任意一个值代入1、化简(x^2 2020-12-31 …