早教吧作业答案频道 -->数学-->
已知双曲线C:x^2/a^2-y^2/b^2=1(a>0,b>0)的一个焦点是F2(2,0)且b=根号3a.(1)求双曲线C的方程(2)设经过焦点F2的直线l的一个法向量为(m,1),当直线l与双曲线C的右支相交雨A,B不同的两点时,求
题目详情
已知双曲线C:x^2/a^2-y^2/b^2=1 (a>0,b>0)的一个焦点是F2(2,0)且b=根号3a.(1)求双曲线C的方程 (2)设经过焦点F2的直线l的一个法向量为(m,1),当直线l与双曲线C的右支相交雨A,B不同的两点时,求实数m的取值范围:并证明AB重点M在曲线3(x-1)^2-y^2=3上(3)设(2)中直线l与双曲线C的右支相交于A,B两点.问是否有实数m,使角AOB为锐角?若存在,求出m的范围,若不存在,说明理由
▼优质解答
答案和解析
(1)c=2c^2=a^2+b^2
∴4=a^2+3a^2∴a^2=1,b^2=3,∴双曲线为 x^2-y^2/3=1.
(2)l:m(x-2)+y=0由 {y=-mx+2m
x^2-y^2/3=1
得(3-m^2)x^2+4m^2x-4m^2-3=0
由△>0得4m^4+(3-m^2)(4m^2+3)>0
12m^2+9-3m^2>0即m^2+1>0恒成立
又{x1+x2>0
x1•x2>0
4m^2/(m^2-3)>0
(4m^2+3)/(m^2-3)>0
∴m^2>3∴ m∈(-∞,-根号3)∪(根号3,+∞)
设A(x1,y1),B(x2,y2),
则 (x1+x2)/2=(2m^2/m^2-3)(y1+y2)/2=-2m^3/(m^2-3)+2m=-6m(m^2-3)
∴ AB中点M(2m2m2-3,-6mm2-3)
∵ 3[(2m^2)/(m^2-3)-1]^2-36m^2/[(m^2-3)^2]=3
∴M在曲线3(x-1)^2-y^2=3上.
(3)A(x1,y1),B(x2,y2),设存在实数m,使∠AOB为锐角,则OA→•OB→>0
∴x1x2+y1y2>0
因为y1y2=(-mx1+2m)(-mx2+2m)=m^2x1x2-2m^2(x1+x2)+4m^2
∴(1+m^2)x1x2-2m^2(x1+x2)+4m^2>0
∴(1+m^2)(4m^2+3)-8m^4+4m^2(m^2-3)>0即7m^2+3-12m^2>0
∴ m^2<35,与m^2>3矛盾
∴不存在
∴4=a^2+3a^2∴a^2=1,b^2=3,∴双曲线为 x^2-y^2/3=1.
(2)l:m(x-2)+y=0由 {y=-mx+2m
x^2-y^2/3=1
得(3-m^2)x^2+4m^2x-4m^2-3=0
由△>0得4m^4+(3-m^2)(4m^2+3)>0
12m^2+9-3m^2>0即m^2+1>0恒成立
又{x1+x2>0
x1•x2>0
4m^2/(m^2-3)>0
(4m^2+3)/(m^2-3)>0
∴m^2>3∴ m∈(-∞,-根号3)∪(根号3,+∞)
设A(x1,y1),B(x2,y2),
则 (x1+x2)/2=(2m^2/m^2-3)(y1+y2)/2=-2m^3/(m^2-3)+2m=-6m(m^2-3)
∴ AB中点M(2m2m2-3,-6mm2-3)
∵ 3[(2m^2)/(m^2-3)-1]^2-36m^2/[(m^2-3)^2]=3
∴M在曲线3(x-1)^2-y^2=3上.
(3)A(x1,y1),B(x2,y2),设存在实数m,使∠AOB为锐角,则OA→•OB→>0
∴x1x2+y1y2>0
因为y1y2=(-mx1+2m)(-mx2+2m)=m^2x1x2-2m^2(x1+x2)+4m^2
∴(1+m^2)x1x2-2m^2(x1+x2)+4m^2>0
∴(1+m^2)(4m^2+3)-8m^4+4m^2(m^2-3)>0即7m^2+3-12m^2>0
∴ m^2<35,与m^2>3矛盾
∴不存在
看了已知双曲线C:x^2/a^2-...的网友还看了以下:
数学题: 已知抛物线y=x²+bx+c交x轴于A(1,0),B(3,0), 交y轴于点C,其顶点为 2020-05-13 …
如图,抛物线y=ax²+bx+c交x轴于A、B两点,交y轴于点c,对称轴为直线x=1,已知:A(- 2020-05-15 …
抛物线y=ax^2+bx+c交x轴于A、B两点,与y轴交于点C,已知抛物线的对称轴为x=1,B(3 2020-05-15 …
(1999•西安)如图,在直角坐标系中,以AB为直径的⊙C交x轴于A,交y轴于B,满足OA:OB= 2020-07-20 …
如图抛物线y=ax2+bx+c交x轴于a(1,0),b(4,0)两点,交y轴于c点,与过点c且平行 2020-07-29 …
如图,在平面直角坐标系xoy中,直线y=x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线y= 2020-08-03 …
如图,已知直线y=-12x+2与x轴、y轴分别相交于A、B两点,过A、B两点的抛物线y=ax2+bx 2020-10-31 …
初中二次函数数学题一)抛物线y=ax^+bx+c交x轴于A、B两点,交y轴于点C,对称轴为直线x=1 2020-11-01 …
(2011•威海)如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于 2020-11-13 …
抛物线y=ax2+bx+c交x轴于A、B两点,交y于点C,已知抛物线的对称轴为x=1B(3,0),C 2020-11-27 …