早教吧作业答案频道 -->其他-->
已知函数:f(x)=x-(a+1)lnx-ax(a∈R),g(x)=12x2+ex-xex(1)当x∈[1,e]时,求f(x)的最小值;(2)当a<1时,若存在x1∈[e,e2],使得对任意的x2∈[-2,0],f(x1)<g(x2)恒成立,求a的
题目详情
已知函数:f(x)=x-(a+1)lnx-
(a∈R),g(x)=
x2+ex-xex
(1)当x∈[1,e]时,求f(x)的最小值;
(2)当a<1时,若存在x1∈[e,e2],使得对任意的x2∈[-2,0],f(x1)<g(x2)恒成立,求a的取值范围.
a |
x |
1 |
2 |
(1)当x∈[1,e]时,求f(x)的最小值;
(2)当a<1时,若存在x1∈[e,e2],使得对任意的x2∈[-2,0],f(x1)<g(x2)恒成立,求a的取值范围.
▼优质解答
答案和解析
(1)f(x)的定义域为(0,+∞),f′(x)=
(a∈R),
当a≤1时,x∈[1,e],f′(x)≥0,f(x)为增函数,
所以f(x)min=f(1)=1-a;
当1<a<e时,x∈[1,a],f′(x)≤0,f(x)为减函数,x∈[a,e],f′(x)≥0,f(x)为增函数,
所以f(x)min=f(a)=a-(a+1)lna-1;
当a≥e时,x∈[1,e],f′(x)≤0,f(x)为减函数,
所以f(x)min=f(e)=e−(a+1)−
;
综上,当a≤1时,f(x)min=1-a;当1<a<e时,f(x)min=a-(a+1)lna-1;当a≥e时,f(x)min=e−(a+1)−
;
(2)存在x1∈[e,e2],使得对任意的x2∈[-2,0],f(x1)<g(x2)恒成立,即 f(x)min<g(x)min,
当a<1时,由(1)可知,x∈[e,e2],f(x)为增函数,
∴f(x1)min=f(e)=e−(a+1)−
,
g′(x)=x+ex-xex-ex=x(1-ex),
当x∈[-2,0]时g′(x)≤0,g(x)为减函数,g(x)min=g(0)=1,
∴e−(a+1)−
<1,a>
,
∴a∈(
,1).
(x−1)(x−a) |
x2 |
当a≤1时,x∈[1,e],f′(x)≥0,f(x)为增函数,
所以f(x)min=f(1)=1-a;
当1<a<e时,x∈[1,a],f′(x)≤0,f(x)为减函数,x∈[a,e],f′(x)≥0,f(x)为增函数,
所以f(x)min=f(a)=a-(a+1)lna-1;
当a≥e时,x∈[1,e],f′(x)≤0,f(x)为减函数,
所以f(x)min=f(e)=e−(a+1)−
a |
e |
综上,当a≤1时,f(x)min=1-a;当1<a<e时,f(x)min=a-(a+1)lna-1;当a≥e时,f(x)min=e−(a+1)−
a |
e |
(2)存在x1∈[e,e2],使得对任意的x2∈[-2,0],f(x1)<g(x2)恒成立,即 f(x)min<g(x)min,
当a<1时,由(1)可知,x∈[e,e2],f(x)为增函数,
∴f(x1)min=f(e)=e−(a+1)−
a |
e |
g′(x)=x+ex-xex-ex=x(1-ex),
当x∈[-2,0]时g′(x)≤0,g(x)为减函数,g(x)min=g(0)=1,
∴e−(a+1)−
a |
e |
e2−2e |
e+1 |
∴a∈(
e2−2e |
e+1 |
看了已知函数:f(x)=x-(a+...的网友还看了以下:
如果函数y=f(x)的图像关于点P中心对称,则称函数f(x)为中心对称函数,P为对称中心1,判断函 2020-04-26 …
求证:函数y=f(a+x)与函数y=f(a-x)关于x=0对称,其中x∈R求证:函数y=f(a+x 2020-05-16 …
求证几个函数对称定理!50待加.1.函数f(x)定义域为R.求证y=f(x-m)与y=f(m-x) 2020-06-06 …
设函数f(x)的=2sin(2x-π/3)+1(1)求f(x)的周期、频率、初相及相位.(2)求函 2020-07-30 …
我们把形如y=f(x)^φ(x)的函数称为幂指函数,幂指函数在求导时,可以利用对数,在函数解析式两 2020-08-01 …
画出y=3的X次方和y=log3X两个函数的图象说说它们图象间的关系它们应该是关于y=X函数对称但 2020-08-01 …
y=x-1/x+2求对称中心要具体解法,最好说明对称中心是怎么求的.谢谢! 2020-08-02 …
我们把形如y=f(x)φ(x)的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边 2020-12-05 …
我们把形如y=f(x)φ(x)的函数称为幂指函数,幂指函数在求导时,可以利用对法数:在函数解析式两边 2020-12-05 …
一个关于微积分的问题如果y是一个关于x的函数,f(x)是关于x的另一个函数,对f(x)dx的积分是一 2020-12-26 …